English

Scientists use glass to create femtosecond lasers

967
2023-09-28 17:12:33
See translation

Image source: Federal Institute of Technology in Lausanne, Switzerland

 

Science and Technology Daily, Beijing, September 27th (Reporter Zhang Jiaxin) Commercial femtosecond lasers are manufactured by placing optical components and their mounting bases on a substrate, which requires strict alignment of optical components. So, is it possible to manufacture femtosecond lasers entirely from glass? According to the latest issue of Optics magazine, scientists at the Federal Institute of Technology in Lausanne, Switzerland have successfully achieved this, with lasers no larger than credit cards and easier to align.

Researchers stated that due to the lower thermal expansion of glass compared to traditional substrates, it is a stable material. Therefore, they chose glass as the substrate and used commercial femtosecond lasers to etch special grooves on the glass to accurately place the basic components of the laser. Even in precision manufacturing at the micron level, the grooves and components themselves are not precise enough to achieve laser quality alignment. In other words, the reflector is not fully aligned, so at this stage, their glass device cannot be used as a laser.

So, researchers further designed etching to position a mirror in a groove with micro mechanical bending, which can locally twist the mirror when irradiated by femtosecond laser. By aligning the mirror in this way, they ultimately created a stable, small-scale femtosecond laser.

Despite its small size, the peak power of the laser is about 1 kilowatt, and the time to emit pulses is less than 200 femtoseconds, which is so short that light cannot pass through human hair.

This method of permanently aligning free space optical components through laser material interaction can be extended to various optical circuits, with extreme alignment resolutions as low as sub nanometer level.

 

Reprinted from:LDWORLD

Related Recommendations
  • Researchers have developed a QCL DFB continuous laser for gas detection

    Alpes Laser was founded in 1998 in Nazhatel, Switzerland and was the first company to bring quantum cascade lasers to the market. It released its first continuous laser in 2001 and its first high gain laser in 2009, thus maintaining this priority position.In 2004, the first commercial laser was introduced.Principle: In a single mode laser, the grating is etched into the active region to force the ...

    2023-08-16
    See translation
  • Dehaha launches laser cutting integrated machine screw compressor

    The revolution in the laser cutting industry is in full swing. Like the laser cutting machine industry, China's air compressor industry has developed rapidly in the past 20 years and has undergone iterative progress in response to the huge demands of various industries. It has gradually achieved a process from imitation to independent innovation.Recently, DHH Compressor has launched its latest inn...

    2024-05-27
    See translation
  • University of Science and Technology of China realizes quantum elliptical polarization imaging

    Recently, the team led by Academician Guo Guangcan from the University of Science and Technology of China has made significant progress in the research of quantum elliptical polarization imaging. The research group of Professor Shi Baosen and Associate Professor Zhou Zhiyuan combined high-quality polarization entangled light sources with classical polarization imaging technology to observe the bir...

    04-14
    See translation
  • TRUMPF high-power laser dynamic beam shaping technology creates opportunities for the electric vehicle industry

    It is reported that researchers from TRUMPF in Germany reported research on using dynamic beam shaping of high-power lasers to improve the productivity of hairpin stators, creating opportunities for the electric vehicle industry. Relevant research was published in "PhotonicsViews" under the title "Unlocking opportunities for the EV industry with beam shaping of high-power lasers".The electric vehi...

    2024-07-01
    See translation
  • The latest progress in laser chip manufacturing

    Modern computer chips can construct nanoscale structures. So far, only these tiny structures can be formed on top of silicon chips, but now a new technology can create nanoscale structures in a layer beneath the surface. The inventor of this method stated that it has broad application prospects in the fields of photonics and electronics, and one day, people can manufacture 3D structures on the ent...

    2024-07-29
    See translation