English

Shanghai Optical Machinery Institute has made progress in laser assisted connection of metal carbon fiber composite heterojunction materials

38
2023-09-01 14:28:48
See translation

Recently, the research team of Yang Shanglu from the Laser Intelligent Manufacturing Technology R&D Center of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made new progress in the laser assisted connection of metal carbon fiber composite heterostructure joints.

The team used an adjustable flat top rectangular semiconductor laser as a heat source to achieve the connection between high-strength steel and thermoplastic resin based carbon fiber composite materials. The relationship between the interface thermal history, interface forming mechanism, and joint performance of different materials was elucidated, and a new laser heat input process strategy was proposed.

The relevant research results are published in Composite Structures under the title of "Effect of international thermal history on bonding mechanism of laser assisted joint of QP980-FRTP with adjustable flat top rectangular laser beam".

Developing high-performance multi material hybrid structures is a development trend in the aerospace field. Carbon fiber reinforced thermoplastic composites have ultra-high specific strength and toughness, and can be mixed with metals to meet the requirements of structural lightweight and cost control. There are significant differences in physical and chemical properties between metals and composite materials, and existing methods for connecting dissimilar materials have shortcomings. It is urgent to develop high-quality and efficient new connection processes.

Figure 1. Laser assisted connection process, ultra fast laser surface treatment structure, and interface thermal history monitoring
The team studied the interface thermal history during laser assisted bonding, analyzed the temperature state of the resin matrix and its wetting behavior on the metal surface, and compared the effects of different interface thermal histories on interface bonding defects, chemical composition, joint strength, and failure behavior. By using the interface thermal history design method and laser thermal input process control, the ultimate interface temperature and sufficient insulation time have been achieved, which helps the complete melting and diffusion of the resin matrix on the metal surface, fills the micropores at the interface, promotes chemical bonding, and produces high-quality joints with peak loads above 10kN and shear strengths above 22MPa. The relevant research results have broad application prospects in aerospace and other related fields.

Figure 2. Relationship between interfacial thermal history and resin wetting behavior on metal surfaces

Source: Laser Manufacturing Network

Related Recommendations
  • Laser Photonics Corporation acquires Control Micro Systems through asset purchase agreement

    Recently, Laser Photonics Corporation (LPC), a laser cleaning equipment developer listed on NASDAQ in the United States, announced that the company has signed a final agreement to acquire Control Micro Systems, Inc. (CMS) through an Asset Purchase Agreement (APA), but the financial details of the transaction have not yet been disclosed.At present, LPC's market value has shrunk by 70%, and it is de...

    2024-11-05
    See translation
  • Using a new type of ground laser to track space debris

    The Polish Space Research Center of the Celestial Geodynamics Observatory located in Borowitz near Poznan will enhance its capabilities with a new and powerful laser.The first task of this state-of-the-art device is to enable researchers to accurately track the trajectories of 300 previously identified space debris in no less than six months.Observatory Director Pawe ł Lejba emphasized the i...

    2024-03-14
    See translation
  • IPG launches dual beam fiber laser for additive manufacturing applications

    Recently, American fiber laser giant IPG Photonics announced the launch of a new laser series specifically designed for the additive manufacturing field.The highlight of this series of lasers lies in its integration of IPG's unique dual beam technology, which can independently regulate and simultaneously emit core and ring beams, setting a new benchmark in accuracy, efficiency, and reliability.Ba...

    2024-11-25
    See translation
  • Scientists uncover the HPC potential of advances in communications and global laser light sources

    Thanks to the advent of high performance computing (HPC) for global laser light sources, the optical communications world is on the verge of major change. This revolutionary technology will redefine the way we transmit and receive data, bringing unprecedented speed and efficiency.Optical communication, which uses light to transmit information, has been a cornerstone of our digital world for deca...

    2023-08-04
    See translation
  • Filatek: Leading the Development of Laser, Shining "Additive Prince"

    In recent years, the field of laser technology has received widespread attention from the outside world. At that time, the Munich Shanghai Electronic Production Equipment Exhibition was successfully held in Shanghai, and Suzhou Feilaitek Laser Technology Co., Ltd. (hereinafter referred to as "Feilaitek"), a leading enterprise in the field of industrial laser 3D dynamic focusing systems, appeared a...

    2024-04-12
    See translation