English

High Power Laser Assists Scientists in Discovering a New Stage of High Density and Ultra High Temperature Ice

1054
2023-10-11 14:38:26
See translation

As is well known, the outer planets of our solar system, Uranus and Neptune, are gas giants rich in water. The extreme pressure on these planets is 2 million times that of the Earth's atmosphere. Their interiors are also as hot as the surface of the sun. Under these conditions, water exhibits a strange high-density ice phase.

Researchers have recently observed one of the stages, called Ice XIX, which is the first to use high-power lasers to reproduce necessary extreme conditions. The Neptune model shows the potential depth of the newly discovered body centered cubic superion ice XIX. It can explain Neptune's multipolar magnetic field (purple), which is due to an increase in conductivity and tilt relative to the axis of rotation (green).

Image source: SLAC National Accelerator Laboratory
Researchers measured the Ice XIX structure under extreme conditions using a linear accelerator coherent light source (a groundbreaking X-ray laser device) and found that oxygen atoms are arranged in a body centered cubic structure, while hydrogen atoms move freely like fluids, greatly improving conductivity. Their paper is published in the Science Report.

Voyager 2 is a solar system exploration spacecraft launched by NASA in 1977, which measured the extremely unusual magnetic field around Uranus and Neptune. Scientists believe that the strange states of so-called superionic ice are a possible explanation, as the conductivity of these states increases. This work proves the existence of the previously undiscovered Ice XIX phase. It indicates that the phase can be formed at the correct depth and helps to interpret the Voyager 2 magnetic data.

Water is a common compound in the solar system and essential for life. It exhibits an exceptionally complex pressure temperature phase diagram, with 18 crystalline ice phases identified. There is no more important dense ice phase than the interior of gas giants such as Uranus and Neptune. Scientists speculate that the complex magnetic fields of these planets are generated by the strange high-pressure state of water ice with superionic properties. However, under these extreme conditions, the structure of ice is difficult to measure.

Researchers have found the first direct evidence for the use of extreme condition instruments using linear accelerator coherent light sources, ultra fast X-ray free electron lasers, and Department of Energy (DOE) science office user facilities to detect the new stage of high-density ultra-hot water ice in laser driven dynamic compression processes.

At 200GPa (2 million atmospheres) and 5000K (8500 ° F), this new high-pressure ice phase (known as Ice XIX) has a body centered cubic (BCC) lattice structure. Although other structures are theoretically stable under these conditions, the BCC structure of Ice XIX will increase the conductivity inside the ice giant much deeper than previously thought.

These results provide an important and convincing origin for the multipolar magnetic fields measured by the Voyager 2 spacecraft on Uranus and Neptune.

Source: Ofweek


Related Recommendations
  • The fiber laser system overcomes outdated issues through a PC based EtherCAT control platform

    In order to maintain relevance and success, companies with a long history must respect their past while not ignoring the future. This is the method adopted by Cincinnati Corporation (CI), a metal processing machinery manufacturer based in Harrison, Ohio, since its establishment in the late 1890s.The company is carefully considering technological changes. Incorrect selection of control hardware, ne...

    2024-05-25
    See translation
  • Israeli startup has developed a new laser powder bed fusion technology (SLS)

    Starting company 3DM from Israel has developed a new laser powder bed fusion technology (SLS) and recently released its first product. It is reported that the new technology developed by this young company established in 2016 will open up the possibility of new materials.3DM quantum cascade laserThe quantum cascade laser (QCL) stands out in the competition of 3DM in the SLS field. QCL was develope...

    2023-10-27
    See translation
  • Nature Photonics | New Comb Laser Assists Stable and Efficient Generation of Multi wavelength Signals

    Recently, researchers have developed a comb laser with higher stability and efficiency. The use of synthetic reflection self injection locking micro comb design enables the laser to achieve stability and increase conversion efficiency by more than 15 times. This efficient, stable, and easy to manufacture design is expected to make rapid progress in fields such as portable sensors, autonomous navig...

    2024-03-02
    See translation
  • Researchers have developed a new type of frequency comb that is expected to further improve the accuracy of timing

    The chip based device, known as the frequency comb, measures the frequency of light waves with unparalleled accuracy, completely changing timing, detection of exoplanets, and high-speed optical communication.Now, scientists and collaborators from the National Institute of Standards and Technology in the United States have developed a new method for manufacturing combs, which is expected to improve...

    2024-03-15
    See translation
  • Hanbit Laser Layout in Southeast Asia's Mid to Low End Market

    Hanbit Laser, a South Korean laser equipment manufacturer, has recently completed an important step in its strategic layout for the Southeast Asian market. Recently, the company officially opened a laser application center in Hanoi, Vietnam, and entered the local mid to low price equipment market by integrating laser technology and automation solutions. This is a substantial progress in implementi...

    02-26
    See translation