English

Laser technology reveals hidden gases in complex mixtures

1110
2024-01-11 14:29:04
See translation

Laser Network reported on January 11th that modern equipment has been fine tuned to detect highly specific gases, including trace gases found in the atmosphere, gases present in combustion exhaust emissions, and gases used in technology plasma applications.

They achieve this by calculating the percentage of light at a certain wavelength that is absorbed or attenuated by the sample. This way, the concentration of the gas can be calculated. The chemicals to be tested determine which detection wavelength should be used. In fact, multiple molecules can absorb the same amount of light, even at carefully selected wavelengths, which is a typical problem.

The efficiency of measurement methods is limited by this phenomenon called cross sensitivity. So far, this issue has been resolved, either by conducting additional measurements at various wavelengths, such as measuring spectra, or by using gas chromatography to separate interfering gases before measurement.

Dr. Ibrahim Sadiek, a former doctoral candidate at Gernot Friedrich and Leibniz Institute of Plasma Science and Technology, has now proven that there is a simpler solution.

Scientists have created a technology that enables them to surpass this cross sensitivity in absorption spectroscopy, even when producing single wavelength data. The scientific journal Science Report recently released a feasibility study on a novel, patent pending dual species one wavelength technology based on selective optical saturation.

This new technology utilizes the optical saturation phenomenon in molecules. Only very high light intensity - now easily generated by lasers - can lead to optical saturation. Subsequently, these molecules showed "transparency" in the absorption spectrum, indicating that the light emitted by radiation is no longer weakened.

The characteristic of the corresponding gas type is the point where the sample becomes transparent. Due to the deviation of concentration measurement caused by light saturation, it was previously believed to be harmful to absorption measurement and should be avoided at all costs.

As shown by Sadiek and Friedrich's research, using selective optical saturation can even measure the number of two molecules that completely interfere with each other at a given wavelength.

For example, a typical problem in practice is the detection of very low concentrations of chlorinated hydrocarbons in the atmosphere.

Currently, his team is conducting maritime research projects to advance the application of this technology in traditional absorption spectrometers. Then, on-site measurements will demonstrate the potential for reducing cross sensitivity to better explore the exchange process at the water air interface. If trace gases have sufficiently diverse saturation intensities, this method can theoretically be used to simultaneously detect multiple trace gases.

Source: Laser Net

Related Recommendations
  • High Resolution Visible Light Imaging of Large Aperture Telescopes

    The deformable mirror used in adaptive optics can instantly correct the static wavefront aberrations and atmospheric turbulence wavefront disturbances of the optical system by changing its surface. This enables the optical system to automatically adapt to changes in the environment and maintain optimal performance. It is widely used in high-resolution astronomical observations, laser atmospheric t...

    2023-10-31
    See translation
  • Advancing Astronomy: Using Laser Guided Star Adaptive Optics to Obtain clearer celestial views

    Adaptive optics is defined as an advanced optical system used to correct the transmission medium between the subject and the image, providing users with clearer images. Adaptive optics helps to use a complex combination of deformable mirrors to correct images in real-time through distortion in the Earth's atmosphere. These images are of greater importance in many vertical industries such as health...

    2024-02-22
    See translation
  • Sivers will develop laser arrays for artificial intelligence and deliver prototypes in 2024

    Sivers Optics, a subsidiary of Sivers Semiconductors, has signed a product development agreement with an undisclosed company.Starting from the initial contract worth $1.3 million, the prototype will be delivered in 2024, and it is expected that the agreement will grow rapidly in 2025 before transitioning to mass production. After entering full production, customers expect the annual chip productio...

    2024-03-18
    See translation
  • New method doubles and accelerates thermal tuning of optical chips, supporting two current and voltage regulation methods

    Silicon based quantum chip technology is one of the hot research directions in the field of integrated photonics. Thanks to compatibility with CMOS technology and silicon material characteristics, silicon-based integrated optical chips and devices have many advantages such as low cost, small size, low power consumption, and high integration, providing an ideal platform for large-scale optical comp...

    2024-04-02
    See translation
  • Laser Photonics officially launches its SaberTech laser cutting system

    Recently, Laser Photonics (LPC) officially launched its SaberTech laser cutting system. This system not only enriches the product line of LPC's laser cleaning, welding, marking, and engraving systems, but also marks another important breakthrough for the company in the field of laser technology. This product release is another heavyweight measure after LPC's latest generation laser cleaning system...

    2024-06-19
    See translation