English

Researchers Obtaining Scientific Returns from Raman Spectroscopy for External Bioexploration Using Lasers

1083
2023-10-23 15:09:27
See translation

We investigated the potential of laser selection in a wide optical range from ultraviolet to visible light, and then to infrared (excitation wavelengths of 325, 532, 785, and 1064 nm), in order to combine and analyze extreme microorganisms related to Earth (such as Cryptomeria elegans, cold floating nematodes, and circular green algae), carbon water compound molecules, as well as simulated mineral mixtures (P-MRS, S-MRS, LRS, and JSC-1) of weathering layers on the Martian and lunar surfaces.

We demonstrate that the optimization of laser photon energy provides (at least one selected excitation wavelength) high-end quality Raman spectroscopy for each inspection sample. In most cases, the infrared spectral range is advanced for biological samples, while excitation within the visible and ultraviolet spectral ranges is usually advantageous, or at least sufficient to accurately identify/analyze mineral phases under luminescent laser spots on simulated planetary surfaces.

UV excitation does not always provide a significant contrast in Raman Stokes response to induced photoluminescence in the studied biomolecules. The most prominent feature in the Raman spectrum of biological samples is assigned to their specific pigments, and is also considered a biomolecular feature of extreme microorganisms. The key issue of the specific advantages and limitations of each specific excitation source means that research can obtain scientific returns from Raman spectroscopy for external biological exploration, such as the optimal trading between single or double excitation wavelengths of biological and geological spectral data.

Source: Laser Network

Related Recommendations
  • An innovative technology that can make light "bend"

    A research team from the University of Glasgow in the UK drew inspiration from the phenomenon of clouds scattering sunlight and developed an innovative technology that can effectively guide or even "bend" light. This technology is expected to achieve significant breakthroughs in fields such as medical imaging, cooling systems, and even nuclear reactors. The relevant research results were published...

    2024-11-11
    See translation
  • The team has developed a method for integrating an electro-optic modulator device on the end face of a single-mode fiber optic jumper

    Electro optical modulators (EOMs) are the main components in optical communication networks, which can control the amplitude, phase, and polarization of light through external electrical signals.In order to achieve ultra compact and high-performance EOM, most of today's research focuses on on-chip devices that combine semiconductor technology with state-of-the-art tunable materials. However,...

    2023-08-24
    See translation
  • How to precisely control the cavity length of gallium nitride based vertical cavity surface emitting lasers?

    Gallium nitride (GaN) vertical cavity surface emitting laser (VCSEL) is a semiconductor laser diode with broad application prospects in various fields such as adaptive headlights, retinal scanning displays, nursing point testing systems, and high-speed visible light communication systems. Their high efficiency and low manufacturing costs make them particularly attractive in these applications.Gall...

    2024-06-12
    See translation
  • New machine learning algorithm accurately decodes molecular optical 'fingerprints'

    Recently, a research team from Rice University in the United States developed a new machine learning algorithm - Peak Sensitive Elastic Network Logistic Regression (PSE-LR). This algorithm is adept at interpreting the unique optical characteristics of molecules, materials, and disease biomarkers, which can help achieve faster and more accurate medical diagnosis and sample analysis. The relevant pa...

    05-09
    See translation
  • High Resolution Visible Light Imaging of Large Aperture Telescopes

    The deformable mirror used in adaptive optics can instantly correct the static wavefront aberrations and atmospheric turbulence wavefront disturbances of the optical system by changing its surface. This enables the optical system to automatically adapt to changes in the environment and maintain optimal performance. It is widely used in high-resolution astronomical observations, laser atmospheric t...

    2023-10-31
    See translation