English

Researchers Obtaining Scientific Returns from Raman Spectroscopy for External Bioexploration Using Lasers

1200
2023-10-23 15:09:27
See translation

We investigated the potential of laser selection in a wide optical range from ultraviolet to visible light, and then to infrared (excitation wavelengths of 325, 532, 785, and 1064 nm), in order to combine and analyze extreme microorganisms related to Earth (such as Cryptomeria elegans, cold floating nematodes, and circular green algae), carbon water compound molecules, as well as simulated mineral mixtures (P-MRS, S-MRS, LRS, and JSC-1) of weathering layers on the Martian and lunar surfaces.

We demonstrate that the optimization of laser photon energy provides (at least one selected excitation wavelength) high-end quality Raman spectroscopy for each inspection sample. In most cases, the infrared spectral range is advanced for biological samples, while excitation within the visible and ultraviolet spectral ranges is usually advantageous, or at least sufficient to accurately identify/analyze mineral phases under luminescent laser spots on simulated planetary surfaces.

UV excitation does not always provide a significant contrast in Raman Stokes response to induced photoluminescence in the studied biomolecules. The most prominent feature in the Raman spectrum of biological samples is assigned to their specific pigments, and is also considered a biomolecular feature of extreme microorganisms. The key issue of the specific advantages and limitations of each specific excitation source means that research can obtain scientific returns from Raman spectroscopy for external biological exploration, such as the optimal trading between single or double excitation wavelengths of biological and geological spectral data.

Source: Laser Network

Related Recommendations
  • Optoma Launches Environmentally Friendly Short Focus Laser 4K Ultra High Definition Home Entertainment and Gaming Projector

    Ranked first in the global and American projection technology fields with 4K UHD and DLP ® The brand Optoma has launched Optoma UHZ35ST, a 4K ultra high definition home entertainment and gaming projector that follows the popular UHD35STx with a short focus laser. With its external power supply and various functional upgrades, UHZ35ST provides higher reliability, portability, and energy e...

    2023-09-19
    See translation
  • The visual LiDAR fusion calibration board improves the detection accuracy of the vehicle navigation system and does not need to be adjusted before sailing

    At present, the navigation system has become an important equipment on ships, aircraft, missiles, automobiles and other navigational vehicles. Laser Doppler radar has become an important development direction in the field of velocity measurement technology because of its high accuracy, good spatial resolution and fast dynamic response. The application of the three-beam Doppler Lidar in the...

    2023-08-23
    See translation
  • Trumpf announces four personnel changes

    Recently, global laser giant Germany's Trumpf announced four personnel changes, namely Claudio Santopietro as the head of intelligent factory consulting and automation, Kevin Cuseo as the head of software sales, Julian Schorpp as the product manager for automatic bending products, and Adam Simons as the head of additive manufacturing for Trumpf North America.According to relevant information, Clau...

    2024-11-26
    See translation
  • The improvement of additive manufacturing through artificial intelligence, machine learning, and deep learning

    Additive manufacturing (AM) has made it possible to manufacture complex personalized items with minimal material waste, leading to significant changes in the manufacturing industry. However, optimizing and improving additive manufacturing processes remains challenging due to the complexity of design, material selection, and process parameters. This review explores the integration of artificial int...

    02-24
    See translation
  • Polarization of Laser Writing Waveguides Controlled by Liquid Crystal

    German researchers have developed a method for controlling and manipulating optical signals by embedding liquid crystal layers into waveguides created by direct laser writing. This work has produced devices capable of electro-optic control of polarization, which may open up possibilities for chip based devices and complex photonic circuits based on femtosecond write waveguides.Researcher Alexandro...

    2024-03-13
    See translation