English

Researchers Obtaining Scientific Returns from Raman Spectroscopy for External Bioexploration Using Lasers

720
2023-10-23 15:09:27
See translation

We investigated the potential of laser selection in a wide optical range from ultraviolet to visible light, and then to infrared (excitation wavelengths of 325, 532, 785, and 1064 nm), in order to combine and analyze extreme microorganisms related to Earth (such as Cryptomeria elegans, cold floating nematodes, and circular green algae), carbon water compound molecules, as well as simulated mineral mixtures (P-MRS, S-MRS, LRS, and JSC-1) of weathering layers on the Martian and lunar surfaces.

We demonstrate that the optimization of laser photon energy provides (at least one selected excitation wavelength) high-end quality Raman spectroscopy for each inspection sample. In most cases, the infrared spectral range is advanced for biological samples, while excitation within the visible and ultraviolet spectral ranges is usually advantageous, or at least sufficient to accurately identify/analyze mineral phases under luminescent laser spots on simulated planetary surfaces.

UV excitation does not always provide a significant contrast in Raman Stokes response to induced photoluminescence in the studied biomolecules. The most prominent feature in the Raman spectrum of biological samples is assigned to their specific pigments, and is also considered a biomolecular feature of extreme microorganisms. The key issue of the specific advantages and limitations of each specific excitation source means that research can obtain scientific returns from Raman spectroscopy for external biological exploration, such as the optimal trading between single or double excitation wavelengths of biological and geological spectral data.

Source: Laser Network

Related Recommendations
  • IPG Photonics announces 2024 financial loss of $162 million

    On February 11th, global industrial fiber laser giant IPG Photonics announced its financial performance for the fourth quarter and full year of 2024. Annual sales have fallen below the $1 billion mark for the first time, with a year-on-year decline of 24% and a pre tax loss of up to $162 million. As an industry leader, IPG's financial report not only reflects the deep adjustment faced by the ind...

    02-13
    See translation
  • Shanghai Optics and Machinery Institute has made new progress in laser welding of new high-temperature nickel based alloys

    Recently, the research team of Yang Shanglu from the Laser Intelligent Manufacturing Technology R&D Center of the Chinese Academy of Sciences Shanghai Institute of Optics and Precision Machinery has made new progress in laser welding of new structural materials for high-temperature molten salts. The research team used a high-power laser for the first time to achieve defect free welding of nick...

    2023-09-01
    See translation
  • Instrument Systems will showcase advanced optical measurement solutions for display technology in San Jose next week

    In the 2024 Showweek Germany Pavilion, Instrument Systems will showcase the LumiTop series, a series of imaging colorimeters designed specifically for high-precision and fast 2D measurements, to meet specific needs in AR/VR, automotive, and continuous production environments.The LumiTop 5300 AR/VR is a high-resolution camera developed specifically for evaluating near eye displays, which will recei...

    2024-05-09
    See translation
  • Laser cladding method improves the surface performance of parts

    Laser cladding, also known as laser metal deposition, is a process of depositing one material onto another.When the laser beam scans the target surface, metal powder or wire flow is fed into the molten pool formed by the laser beam, thereby producing the required material coating.The laser cladding method improves the surface properties of the parts, such as wear resistance, and allows for the rep...

    2023-12-28
    See translation
  • Breakthrough development of terahertz quantum cascade lasers

    With the development of groundbreaking components for terahertz quantum cascade lasers, a huge leap has been made in the field of laser technology. A group of researchers have successfully designed a broadband single-chip external coupler with the potential to redefine the functionality of terahertz QCL.The new external coupler is fundamentally based on planar bimetallic waveguides. Its design is ...

    2024-01-04
    See translation