English

Researchers have successfully developed the world's first superconducting broadband photon detector

65
2023-11-02 14:44:08
See translation

Researchers at the National Institute of Information and Communication Technology in the United States have invented a new structure of a superconducting strip photon detector that can achieve efficient photon detection even in wide strips, and have successfully developed the world's first superconducting wide strip photon detector.

The band width of the detector is more than 200 times that of traditional superconducting nanoband photon detectors. This technology helps to solve the problems of low productivity and polarization dependence in traditional SNSPD. The new SWSPD is expected to be applied to various advanced technologies such as quantum information communication and quantum computers, enabling these advanced technologies to be applied in society as soon as possible.

This work is published in the journal Optical Quantum.
Photon detection technology is a strategic core technology that is currently being intensively researched and developed globally in many advanced technology fields such as quantum information communication and quantum computing to achieve innovation. It is also an innovative technology in fields such as live cell fluorescence observation, deep space optical communication, and laser sensing.

The NICT research team has developed an SNSPD with a band width of 100 nm or less. They successfully achieved high-performance beyond other photon detectors and applied them to quantum information communication technology, proving their practicality. 

However, the preparation of SNSPDs requires the use of advanced nanoprocessing techniques to form nanoband structures, which can lead to changes in detector performance and hinder the improvement of productivity. In addition, the polarization dependence of superconducting nanoribbons due to their winding structure also limits their application as photon detectors.

In this work, NICT invented a new structure called "high critical current group structure", which can achieve efficient photon detection even by widening the band width in superconducting strip photon detectors. It successfully developed a SWSPD with a width of 20 microns, which is more than 200 times wider than traditional nanostrip photon detectors, and achieved high-performance operation for the first time in the world.

The nanobelt type developed by NICT requires the formation of extremely long superconducting nanobelts with a bandwidth of 100 nm or less, in a winding and tortuous shape. The broadband type can now be formed using only a single short straight superconducting tape.

This SWSPD does not require nanomachining technology and can be manufactured through high productivity universal lithography technology. In addition, due to the wider bandwidth of the stripe compared to the incident light spot illuminated from the optical fiber, polarization dependence in the nanostrip detector can be eliminated.

Through the performance evaluation of the detector, the detection efficiency in the telecommunications band is 78%, which is equivalent to 81% of the nanoband type. In addition, the numerical value of timing jitter is better than that of nanostrip type.

Compared with the nanobelt type, this achievement enables photon detectors to have higher productivity and superior performance and characteristics. Nanobelt type has been positioned as an indispensable photon detection technology in advanced technology fields such as quantum information communication. This technology is expected to be applied to various quantum information communication technologies and become an important foundational technology for achieving the networked quantum computer advocated by JST's lunar landing goal 6.

In the future, the team will further explore the HCCB structure in SWSPD, which can efficiently detect photons not only in the telecommunications band, but also in a wide range of wavelengths from visible light to mid infrared. In addition, they will also attempt to further expand the size of the photon receiving area to expand applications such as deep space optical communication technology, laser sensing, and live cell observation.

Source: Laser Network

Related Recommendations
  • Switzerland's top 100 sales drop to 330.9 million Swiss francs in the first half of the year

    Recently, Swiss company Bystronic disclosed its financial performance for the first half of 2024.The financial report shows that the market situation for the Swiss Super 100 in the first half of 2024 remains very tense. Customers in various end markets are unable to fully utilize their production capacity, and operations in all regions are relatively cautious.Despite Swiss supercar actively reduci...

    2024-07-24
    See translation
  • Scientists propose new methods to accelerate the commercialization of superlens technology

    Superlenses are nano artificial structures that can manipulate light, providing a technique that can significantly reduce the size and thickness of traditional optical components. This technology is particularly effective in the near infrared region, and has great prospects in various applications, such as LiDAR, which is called "the eye of autonomous vehicle", mini UAV and blood vessel detector.D...

    2024-03-29
    See translation
  • Laser ablation helps to trace the origin of medieval metals

    Archaeologists have long wondered why the people of Anglo Saxon England began using more silver coins and fewer gold coins between 660 and 750 AD. Researchers in Europe now say they have developed a method to help find the answer. This technology combines laser ablation with traditional trace element analysis to match the isotopic abundance of silver bars in coins with known sources of metal ores ...

    2024-04-13
    See translation
  • Researchers use blurry light to 3D print high-quality optical components

    Canadian researchers have developed a new 3D printing method called Blur Tomography, which can quickly produce micro lenses with commercial grade optical quality. The new method can make designing and manufacturing various optical devices easier and faster.Daniel Webber from the National Research Council of Canada stated, "We have intentionally added optical blurring to the beams used in this 3D p...

    2024-05-11
    See translation
  • The new method can maintain beam quality while significantly improving the power of fiber lasers

    The new discovery by optical scientists has brought new vitality to fiber lasers. This innovative method significantly improves the power of lasers without reducing beam quality, and will become an important defense technology for future low-cost drones and remote sensing.The research teams from the University of South Australia, the University of Adelaide, and Yale University have demonstrated ne...

    2023-12-22
    See translation