English

Progress made in the research and development of high-performance electrically pumped topology lasers by the Institute of Semiconductors, Chinese Academy of Sciences

1230
2024-06-06 14:22:49
See translation

Topological laser (TL) is a laser device designed and manufactured using the principles of topological optics, which can produce a robust single-mode laser and is an ideal light source for future new optoelectronic integrated chips. Electrically pumped topology lasers have become a research hotspot due to their small size and ease of integration, but topology lasers based on electrical injection are still in the early stages of research. Therefore, it is crucial to develop design ideas and technical solutions to improve the output power of electrically pumped topology lasers.

Recently, the team led by Liu Fengqi, a researcher at the Institute of Semiconductors, Chinese Academy of Sciences, has made progress in the research and development of high-performance electrically pumped topology lasers. This study innovatively introduces the design of surface metal Dirac topological cavities (SMDCs), which are prepared on the surface metal layer to preserve the integrity of the active region, providing sufficient gain for achieving high-power output, thereby solving the problem of power improvement of electrically pumped topological lasers limited by active region etching; By utilizing the strong coupling between SMDC and the active region and optimizing the design of absorption edge and topological cavity parameters under low effective refractive index difference, robust topological interband mode operation was achieved, which was validated in the robust single-mode laser spectrum and far-field mode of topological lasers with different structural parameters.

Due to the fact that the SMDC design does not damage the active region and the SMDC structure has high surface radiation efficiency, the device achieved a single mode surface emission peak power of 150 milliwatts. In addition, the device has a vortex polarization far-field, and by introducing phase modulation, while maintaining the vortex polarization characteristics of the topological laser, a symmetrical adjustable far-field is obtained. This device is an ideal on-chip vortex polarized light source.

 

 

Structure of Electric Pumped THz SMDC TL Device


This work provides new ideas for the research and development of high-performance electrically pumped topology lasers, and has positive significance for promoting the development and application of high-performance electrically pumped topology lasers. The relevant research results are titled High power electrically pumped terahertz topological laser based on a surface metal Dirac vortex activity and published in Nature Communications. The research work was supported by the National Natural Science Foundation of China, the National Key R&D Program and the Youth Innovation Promotion Association of the Chinese Academy of Sciences.

Source: Institute of Semiconductors, Chinese Academy of Sciences

Related Recommendations
  • Excitation of nanostructures with two near-infrared lasers to increase emission intensity

    Recently, researchers from the Ultrafast Phenomena Laboratory at the University of Warsaw in Poland, in collaboration with a team from the Institute of Low Temperature and Structural Studies at the Polish Academy of Sciences, discovered an enhanced effect on upconversion nanoparticle emission. Relevant personnel have demonstrated that simultaneously exciting these nanostructures with two near-infr...

    09-28
    See translation
  • Micro ring resonators with enormous potential: hybrid devices significantly improve laser technology

    The team from the Photonic Systems Laboratory at the Federal Institute of Technology in Lausanne has developed a chip level laser source that can improve the performance of semiconductor lasers while generating shorter wavelengths.This groundbreaking work, led by Professor Camille Br è s and postdoctoral researcher Marco Clementi from the Federal Institute of Technology in Lausanne, represe...

    2023-12-11
    See translation
  • New machine learning algorithm accurately decodes molecular optical 'fingerprints'

    Recently, a research team from Rice University in the United States developed a new machine learning algorithm - Peak Sensitive Elastic Network Logistic Regression (PSE-LR). This algorithm is adept at interpreting the unique optical characteristics of molecules, materials, and disease biomarkers, which can help achieve faster and more accurate medical diagnosis and sample analysis. The relevant pa...

    05-09
    See translation
  • The team led by Gao Chunqing and Fu Shiyao from Beijing University of Technology has made significant breakthroughs in the study of photon angular momentum regulation

    Recently, a team led by Gao Chunqing and Fu Shiyao from the School of Optoelectronics at Beijing University of Technology combined optical spatial coordinate transformation with photon spin Hall effect to construct a photon angular momentum filter for the first time internationally, achieving on-demand regulation of photon spin angular momentum and orbital angular momentum.The related achievements...

    2023-10-20
    See translation
  • Micro active vortex laser

    Recently, Dong Yibo, from the Photonic Chip Research Institute of Shanghai University of Technology, published his research findings titled "Nanoprinted Diffractive Layer Integrated Vertical Cavity Surface Emitting Vortex Lasers with Scalable Topological Charge" as the first author in the internationally renowned journal Nano Letters.This achievement was jointly completed by the team of academicia...

    2023-10-24
    See translation