English

Laser engraving: Researchers have created a revolutionary technology

1348
2023-11-24 14:16:34
See translation

Recently, a group of researchers from the University of Cambridge developed an innovative method of using high-energy lasers to improve 3D printing of metals. This discovery has the potential to change the way we design and manufacture complex metal objects.

3D printing has completely changed the landscape of the manufacturing industry. However, it faces obstacles, especially in terms of the characteristics of metals. Laser engraving has emerged as an innovative solution. This method can deposit a layer of metal powder and then fuse it together through laser. This process will generate complex metal objects. However, without precise management, these objects may reduce quality. Therefore, laser engraving has become the key to ensuring the integrity and performance of the finished product.

Enhancing Metal in 3D Printing through Laser Engraving

In 3D printing, traditional metal processing methods are not always applicable. This is where laser engraving comes in handy. The Cambridge team did not use traditional heating and beating techniques, but instead chose a laser that directly changes the metal crystal structure on the object. This process enhances the strength of the metal and reduces its brittleness, like a microscopic and precise hammer.

Thoroughly changing metal processing

The inspiration for laser carving comes from the metal manufacturing methods of our ancestors. By alternately using laser processing and untreated areas, researchers can finely control the characteristics of objects. According to Dr. Matteo Seita, this technology can reduce the cost of metal 3D printing. It promises more sustainable and simpler production, possibly eliminating low-temperature treatment.

In short, laser engraving represents an important progress in metal 3D printing. It can create complex metal objects with enhanced properties. This innovation has led to more efficient and sustainable manufacturing, redefining the use of metals in many engineering applications.

The potential of laser engraving goes far beyond simple manufacturing. In the fields of aerospace, automotive, and medicine, it is used to produce lighter and more durable parts. The accuracy of the laser reduces material waste and helps to utilize resources more wisely. By optimizing material properties, the service life of products can be extended, thereby promoting a circular economy.
In addition, this technology opens up new possibilities in design. Designers and engineers can explore forms that were previously inaccessible. This creative freedom may bring unexpected innovation in multiple fields.

In addition, laser engraving has stimulated research and development. Scientists can try new alloys and composite materials to break through the boundaries of material performance. These explorations may lead to the discovery of revolutionary materials with different applications.

Source: Laser Network

Related Recommendations
  • Researchers use blurry light to 3D print high-quality optical components

    Canadian researchers have developed a new 3D printing method called Blur Tomography, which can quickly produce micro lenses with commercial grade optical quality. The new method can make designing and manufacturing various optical devices easier and faster.Daniel Webber from the National Research Council of Canada stated, "We have intentionally added optical blurring to the beams used in this 3D p...

    2024-05-11
    See translation
  • The 3D toy printer is easy to use and safe, perfect for children and adults

    Children (and adults) like to collect toys, but what if they can make them themselves? This is exactly the focus of the Toybox 3D printer luxury bundle. This 3D printer for children's toys incorporates innovative technology into simplified products, making it very suitable for young people. Do you want to have your own? The cost of this 3D toy printer has been reduced to $348.99.Generally speaking...

    2024-06-05
    See translation
  • Credo launches the world's first 800G DSP for linear receiving optical devices, targeting ultra large scale and artificial intelligence data centers

    Credo Technology Group Holding Ltd announced today the launch of the industry's first Dove 800 850G digital signal processor IC, which has been optimized for linear receiving optical devices and is also known as semi retiming linear optical devices in the industry. In LRO transceivers or active optical cables, only the transmission path from the electrical input to the output of the optical path i...

    2023-11-30
    See translation
  • Researchers have developed the world's smallest silicon chip quantum photodetector

    Researchers at the University of Bristol have made significant breakthroughs in expanding quantum technology by integrating the world's smallest quantum photodetector onto silicon chips. The paper "A Bi CMOS Electron Photon Integrated Circuit Quantum Photodetector" was published in Science Advances.In the 1960s, scientists and engineers were able to miniaturize transistors onto inexpensive microch...

    2024-05-21
    See translation
  • Germany has developed a fast, accurate, and wear-resistant laser drilling CFRP process

    Recently, scientists from the Hanover Laser Center (LZH) in Germany announced the successful development of an automated laser drilling process that can promote the processing of carbon fiber reinforced plastics (CFRP). They stated that this is particularly valuable in applications such as lightweight structures and sound insulation.Composite materials such as carbon fiber reinforced plastics (CFR...

    2024-03-06
    See translation