English

Laser engraving: Researchers have created a revolutionary technology

1355
2023-11-24 14:16:34
See translation

Recently, a group of researchers from the University of Cambridge developed an innovative method of using high-energy lasers to improve 3D printing of metals. This discovery has the potential to change the way we design and manufacture complex metal objects.

3D printing has completely changed the landscape of the manufacturing industry. However, it faces obstacles, especially in terms of the characteristics of metals. Laser engraving has emerged as an innovative solution. This method can deposit a layer of metal powder and then fuse it together through laser. This process will generate complex metal objects. However, without precise management, these objects may reduce quality. Therefore, laser engraving has become the key to ensuring the integrity and performance of the finished product.

Enhancing Metal in 3D Printing through Laser Engraving

In 3D printing, traditional metal processing methods are not always applicable. This is where laser engraving comes in handy. The Cambridge team did not use traditional heating and beating techniques, but instead chose a laser that directly changes the metal crystal structure on the object. This process enhances the strength of the metal and reduces its brittleness, like a microscopic and precise hammer.

Thoroughly changing metal processing

The inspiration for laser carving comes from the metal manufacturing methods of our ancestors. By alternately using laser processing and untreated areas, researchers can finely control the characteristics of objects. According to Dr. Matteo Seita, this technology can reduce the cost of metal 3D printing. It promises more sustainable and simpler production, possibly eliminating low-temperature treatment.

In short, laser engraving represents an important progress in metal 3D printing. It can create complex metal objects with enhanced properties. This innovation has led to more efficient and sustainable manufacturing, redefining the use of metals in many engineering applications.

The potential of laser engraving goes far beyond simple manufacturing. In the fields of aerospace, automotive, and medicine, it is used to produce lighter and more durable parts. The accuracy of the laser reduces material waste and helps to utilize resources more wisely. By optimizing material properties, the service life of products can be extended, thereby promoting a circular economy.
In addition, this technology opens up new possibilities in design. Designers and engineers can explore forms that were previously inaccessible. This creative freedom may bring unexpected innovation in multiple fields.

In addition, laser engraving has stimulated research and development. Scientists can try new alloys and composite materials to break through the boundaries of material performance. These explorations may lead to the discovery of revolutionary materials with different applications.

Source: Laser Network

Related Recommendations
  • Laser Wire Solutions and HumanTek Jointly Enter the Korean Laser Wire Stripping Market

    Recently, Laser Wire Solutions officially welcomed its important distribution partner in South Korea - HumanTek. This cooperation marks the official establishment of HumanTek as a branch of Laser Wire Solutions in Korea, and both parties will work together to provide excellent services for the Korean laser wire stripping market.HumanTek, with its deep foundation in the Korean market and strong pro...

    2024-07-03
    See translation
  • The Science Island team has made breakthroughs in high pulse energy mid infrared fiber transmission

    Recently, the Jiang Haihe Research Group of the Health Institute of the Chinese Academy of Sciences Hefei Institute of Materia Medica made important progress in the research of the high-energy pulsed laser transmission system in the mid infrared band, and designed a 78 μ The 6-hole microstructure anti resonant hollow core fiber (AR-HCF) with a larger core diameter achieved efficient transmissio...

    2024-03-23
    See translation
  • Developing nanocavities for enhancing nanoscale lasers and LEDs

    As humanity enters a new era of computing, new small tools are needed to enhance the interaction between photons and electrons, and integrate electrical and photon functions at the nanoscale. Researchers have created a novel III-V semiconductor nanocavity that can limit light below the so-called diffraction limit, which is an important step towards achieving this goal.In the journal Optical Materi...

    2024-01-29
    See translation
  • Google works with magic leap on AR optics and manufacturing

    In the 2010s, Magic leap is one of the most hyped augmented reality companies, with a lot of money, including from Google. When the magic leap one headset was introduced in 2018, it was not a technological breakthrough in display technology that was once derided. Since then, Magic leap has persevered and has now signed a "multifaceted strategic technology partnership" with Google.Google announced ...

    2024-05-31
    See translation
  • Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

    In the interaction between ultra short and ultra strong laser and matter, electrons with short pulse width and high energy are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite a wide range of ultrafast electromagnetic radiation, as well...

    2024-04-30
    See translation