English

Laser engraving: Researchers have created a revolutionary technology

1318
2023-11-24 14:16:34
See translation

Recently, a group of researchers from the University of Cambridge developed an innovative method of using high-energy lasers to improve 3D printing of metals. This discovery has the potential to change the way we design and manufacture complex metal objects.

3D printing has completely changed the landscape of the manufacturing industry. However, it faces obstacles, especially in terms of the characteristics of metals. Laser engraving has emerged as an innovative solution. This method can deposit a layer of metal powder and then fuse it together through laser. This process will generate complex metal objects. However, without precise management, these objects may reduce quality. Therefore, laser engraving has become the key to ensuring the integrity and performance of the finished product.

Enhancing Metal in 3D Printing through Laser Engraving

In 3D printing, traditional metal processing methods are not always applicable. This is where laser engraving comes in handy. The Cambridge team did not use traditional heating and beating techniques, but instead chose a laser that directly changes the metal crystal structure on the object. This process enhances the strength of the metal and reduces its brittleness, like a microscopic and precise hammer.

Thoroughly changing metal processing

The inspiration for laser carving comes from the metal manufacturing methods of our ancestors. By alternately using laser processing and untreated areas, researchers can finely control the characteristics of objects. According to Dr. Matteo Seita, this technology can reduce the cost of metal 3D printing. It promises more sustainable and simpler production, possibly eliminating low-temperature treatment.

In short, laser engraving represents an important progress in metal 3D printing. It can create complex metal objects with enhanced properties. This innovation has led to more efficient and sustainable manufacturing, redefining the use of metals in many engineering applications.

The potential of laser engraving goes far beyond simple manufacturing. In the fields of aerospace, automotive, and medicine, it is used to produce lighter and more durable parts. The accuracy of the laser reduces material waste and helps to utilize resources more wisely. By optimizing material properties, the service life of products can be extended, thereby promoting a circular economy.
In addition, this technology opens up new possibilities in design. Designers and engineers can explore forms that were previously inaccessible. This creative freedom may bring unexpected innovation in multiple fields.

In addition, laser engraving has stimulated research and development. Scientists can try new alloys and composite materials to break through the boundaries of material performance. These explorations may lead to the discovery of revolutionary materials with different applications.

Source: Laser Network

Related Recommendations
  • Photonics leaders call for EU to implement € 2 billion plan

    Photonics21 has released a new position paper urging the European Commission to create a € 2 billion ($2.35 billion) independent plan for photonics in the 2028-2034 budget, and warning that Europe must 'invest in light, otherwise it will fall into darkness'.Channelled through the European Union’s Multiannual Financial Framework (MFF), the funding is designed to unlock a further €6–8 billion from i...

    10-14
    See translation
  • Outlook - Future of miniaturized lasers

    The disruptive miniaturization design of fiber lasers is feeding back into the handheld laser welding market. The handheld laser welding that enters the trunk is bathed in the luster of black technology, making traditional argon arc welding and electric welding tremble.In the early years, argon arc welding was the most commonly used thin plate welding method among our ancestors, but its drawbacks ...

    2023-12-19
    See translation
  • Scientists have successfully miniaturized erbium-based erbium lasers on silicon nitride photonic chips

    Scientists from the Federal Institute of Technology in Lausanne (EPFL) have successfully miniaturized a powerful erbium-based erbium laser on silicon nitride photonic chips. Due to the large volume and difficulty in shrinking of typical erbium-based fiber lasers, this breakthrough is expected to make significant progress in optical communication and sensing technology.Since the 1960s, lasers have ...

    2024-06-13
    See translation
  • Global manufacturer JQ Laser launches a new fully automatic pipe laser cutting machine equipped with a fully automatic feeding device

    JQ LASER, a global manufacturer specializing in laser cutting machines, has launched a new fully automatic pipeline laser cutting machine model T120A.According to JQ LASER's report on the 16th, the body of this new product adopts a vertical rather than horizontal design, reducing the machining center and improving stability.In the past, traditional double chuck pipe cutting machines had a fixed fr...

    2023-10-18
    See translation
  • Defects and solutions that are prone to occur when laser welding square shell battery explosion-proof valves for power batteries

    For example, the commonly used square shell battery cells for power batteries include laser welding of cover explosion-proof valves, laser welding of pole columns, and laser welding of cover plates and shells. During the process of laser welding of aluminum alloy, it is easy to generate unqualified phenomena such as explosion points, pores, welding cracks, excessive depth and width of fusion. ...

    2023-09-15
    See translation