English

Due to research conducted by scientists from South Korea and the UK, the power of lasers will increase by one million times

171
2023-11-27 14:11:24
See translation

Due to research conducted by scientists from South Korea and the UK, the power of lasers will be able to increase by one million times. The researchers plan to apply this improvement for scientific purposes.

The study was led by representatives of Strathclyde University and the Korea Institute UNIST and GIST. Behind the scenes footage of their work in the journal Nature Photonics. It has been proven that the key to success is to conduct simulations to demonstrate what changes are needed to significantly improve the capability of the device that emits laser pulses.

Based on their analysis, the research team concluded that the breakthrough moment will be to use the plasma density gradient to initiate the photon fusion process. If theoretical results are translated into actual situations, the increase in laser power compared to current results may exceed one million times.

What kind of results are we discussing? I just want to say that the power of the laser used so far - of course, the most powerful laser - is about 10 petawatts. This device is called Vulcan 20-20 and is expected to have a power of 20 petawatt. On the other hand, the upper atmosphere of Earth receives 173 watts of sunlight, of which about one-third of the radiation reaches the surface of our planet.

Powerful lasers can be used for various experiments, such as simulating the conditions inside stars.

As explained by experts, the use of terawatt or petawatt lasers makes it possible to create a new generation of laser plasma accelerators. A sufficiently powerful laser also provides answers to fundamental questions, such as the essence of matter and vacuum. These are just some of the issues covered by the research. Some even talk about conducting experiments at the so-called Schwinger limit, which assumes that light can be converted into matter.

All ideas related to the potential capabilities of this extremely powerful laser will be tested by research team members from the UK and South Korea. According to the representative of Strathclyde University, understanding the nature of matter and vacuum with intensity exceeding 1024 watts per square centimeter is one of the greatest challenges facing modern physics. Thanks to high-energy lasers, it is also possible to simulate the interior of stars and different parts of the solar system.

Source: Laser Net

Related Recommendations
  • New two-photon aggregation technology significantly reduces the cost of femtosecond laser 3D printing

    Scientists at Purdue University in the United States have developed a new type of two-photon polymerization technology. This technology cleverly combines two lasers and utilizes 3D printing technology to print complex high-resolution 3D structures while reducing femtosecond laser power by 50%. It helps to reduce the cost of high-resolution 3D printing technology, thereby further expanding its appl...

    2024-07-05
    See translation
  • High Power Laser Assists Scientists in Discovering a New Stage of High Density and Ultra High Temperature Ice

    As is well known, the outer planets of our solar system, Uranus and Neptune, are gas giants rich in water. The extreme pressure on these planets is 2 million times that of the Earth's atmosphere. Their interiors are also as hot as the surface of the sun. Under these conditions, water exhibits a strange high-density ice phase.Researchers have recently observed one of the stages, called Ice XIX, whi...

    2023-10-11
    See translation
  • Google works with magic leap on AR optics and manufacturing

    In the 2010s, Magic leap is one of the most hyped augmented reality companies, with a lot of money, including from Google. When the magic leap one headset was introduced in 2018, it was not a technological breakthrough in display technology that was once derided. Since then, Magic leap has persevered and has now signed a "multifaceted strategic technology partnership" with Google.Google announced ...

    2024-05-31
    See translation
  • The use of laser equipment to recover refractory materials can reduce 800,000 tons of carbon dioxide emissions

    Refractory material can withstand high temperature above 1500℃. They are essential materials for industrial furnaces that produce glass or ceramics, non-ferrous metals and steel. The service life of manufactured refractory products can range from a few days to many years, depending on the material, the temperature in the melting vessel and other operating parameters. As a result, although ...

    2023-09-04
    See translation
  • BLT launches a new BLT-S800 metal PBF 3D printer equipped with 20 lasers

    Bright Laser Technologies (BLT), a global leader in additive manufacturing headquartered in China, has launched a new BLT-S800 metal 3D printer with a super large construction volume (800 mm x 800 mm x 600 mm) and a 20 fiber laser configuration, which can shorten part delivery time and achieve rapid customer manufacturing.The BLT-S800 system supports titanium alloy, aluminum alloy, high-temperatur...

    2023-10-19
    See translation