English

Fujitsu collaborates to research and develop multi band wavelength fiber optic transmission technology

592
2023-12-05 14:15:10
See translation

Recently, Fujitsu and KDDI research company have successfully developed a high-capacity multi band wavelength multiplexing transmission technology using installed optical fibers.
The new technology of the two companies can transmit wavelengths beyond the C-band by using batch wavelength conversion and multi band amplification technology.

Expanding transmission capacity in remote areas
Two companies have stated that fiber optic communication networks using this technology can achieve wavelength transmission, with a wavelength transmission factor 5.2 times that of current commercial optical transmission technologies.

In this way, the installed fiber optic facilities can be utilized to increase communication traffic in a cost-effective and labor-intensive manner. This technology can also more easily expand the transmission capacity of cities and densely populated residential areas, which may be challenging to install and offer the potential to reduce the time required to initiate services and lower costs.

This development is part of the "Research and Development Project for Enhanced Infrastructure of Post 5G Information and Communication Systems" commissioned by the Japan New Energy and Industrial Technology Development Organization (NEDO).

Figure 1: System image using high-capacity multi band wavelength multiplexing transmission technology (Image source: Fujitsu)

NEDO aims to strengthen the development and manufacturing foundation of Japan's post 5G information and communication systems by developing core technologies. Therefore, from October 2020 to October 2023, Fujitsu and KDDI Research Company participated in a project to improve the performance of the next generation 5G optical network. Traditional commercial fiber optic communication networks use single-mode fibers, where light only passes through the center of the fiber and uses the C-band as the signal transmission band of the optical network. However, with the increase in communication traffic, it is expected that the transmission capacity of only the C-band will be insufficient. In order to increase the transmission capacity of each fiber, the two companies aim to increase the wavelength used from the C-band to the L-band, S-band, U-band, and O-band, in order to achieve multi band transmission.

Potential outcomes of optical communication
As part of this project, Fujitsu has established a simulation model that considers the degradation factors of transmission performance in multi band transmission, thus achieving the transmission design of multi band wavelength multiplexing systems. The simulation model reflects the measurement results of commercial optical fiber characteristics and verifies the extracted transmission parameters through an experimental system integrating a wavelength converter/multi band amplifier.

By using this model, Fujitsu has achieved high-precision simulation, reducing the actual measurement error to within 1dB, thus taking into account the interaction between frequency bands and the degradation of transmission performance.

The research of KDDI Institute has made it possible to use twice the frequency bandwidth of traditional C-band in the O-band, which has never been used before in high-density wavelength division multiplexing (DWDM) transmission.

Combining these two technologies, the two companies conducted actual transmission experiments using existing optical fibers and demonstrated multi band wavelength multiplexing transmission in the O, S, C, L, and U frequency bands (transmission distance of 45 kilometers), proving that the possibility of wavelength transmission is 5.2 times higher than the wavelength multiplexing rate of traditional C-band transmission. The two companies have also confirmed the multi band wavelength multiplexing transmission (transmission distance of 560 kilometers) in the S, C, L, and U bands during simulation.

In this project, Fujitsu and KDDI Research established a design method for a multi band wavelength multiplexing system by constructing a simulation model that considers the interaction between different frequency bands and transmission performance degradation factors.

In addition, since the WDM optical signals in the S-band and U-band are respectively generated by the C-band and L-band optical signals through all optical signal processing technology, there is no need to use dedicated transmitters and receivers in the S-band and U-band.

The integration of these technologies enables DWDM transmission in the S-band+C-band+L-band+U-band using coherent transmission technology, utilizing the phase of light to achieve high-speed and high-capacity communication.

This method minimizes the impact of nonlinear noise to the greatest extent possible, thus overcoming the challenges associated with coherent transmission technology and causing distortion of the O-band transmission signal. By omitting signal compensation at the transmitting end and wavelength dispersion compensation at the receiving end, coherent DWDM transmission in the O-band above 9.6 THz was achieved. The O-band is less affected by wavelength dispersion and has the advantages of reducing digital signal processing load and improving energy efficiency.

Source: OFweek Laser Network

Related Recommendations
  • The constantly developing world of all-weather laser satellite communication

    Using light beams for communication is not a new idea, even outside of Star Trek, Star Wars, and other similar fantasy stories. Scientist and science fiction writer Arthur Clark predicted that beam communication, at that time modern satellite communication was just a dream.In 1975, the magazine published an article about laser communication or laser communication equipment. The demonstrati...

    2023-12-01
    See translation
  • A new method for generating controllable optical pulse pairs using a single fiber laser

    Researchers from Bayreuth University and Konstanz University are developing new methods to control ultra short laser emission using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.Traditionally, the pulse interval of lasers is set by dividing each pulse into two pulses and delaying them at different, mechani...

    2024-01-15
    See translation
  • Coherent launches 532 nm HyperRapid NXT picosecond laser for ultra precision manufacturing of thin film solar cells

    The leader of material processing industry lasers, Cohen Corporation, announced yesterday the launch of its new HyperRapid NXT industrial picosecond laser, with a working wavelength of 532 nm and an average power of 100 W, which can achieve ultra precision manufacturing of thin film solar cells.The second generation solar cells, which are expected to achieve a leap in energy efficiency, are mainly...

    2024-01-25
    See translation
  • In the development of modern electronic welding technology, the application advantages of laser soldering process

    With the rapid development of modern electronic information technology, integrated circuit chip packaging forms are also emerging in an endless stream, and the package density is getting higher and higher, which greatly promotes the development of electronic products to multi-function, high performance, high reliability and low cost.So far, through hole technology (THT) and surface mount technolog...

    2023-09-13
    See translation
  • Laser induced 2D material modification: from atomic scale to electronic scale

    Background IntroductionTwo dimensional materials have attracted widespread attention due to their atomic level thickness and unique properties, such as high binding energy, tunable bandgap, and new electronic degrees of freedom (valley electronics). They have many application prospects in fields such as microelectronics, nanophotonics, and nanoenergy. Various two-dimensional materials have their o...

    2024-02-23
    See translation