English

ABB will add optical sensors to four greenhouse gas monitoring satellites

117
2023-12-06 14:03:33
See translation

ABB has signed a third contract with the global leader in high-resolution space greenhouse gas monitoring, GHGSat, to manufacture optical sensors for its C12, C13, C14, and C15 satellites. It is reported that C12, C13, C14, and C15 satellites are scheduled to be launched into orbit in 2024.

These new satellites will join GHGSat's expanding constellation for detecting and quantifying industrial gas leaks in space. ABB has built payloads (instruments carried on the satellites) for the emission monitoring of 10 greenhouse gas satellites launched into space.

Earlier this year, GHGSat reported that due to the excellent performance of sensors, their existing satellite methane emission measurement capabilities have doubled. This enables GHGSat to accelerate the scale of its monitoring services, helping industries such as oil and gas, power generation, and mining understand and reduce greenhouse gas emissions.

Marc Corriveau, Global Operations Head of ABB Measurement and Analysis Business Line Analysis, stated: "The new contract demonstrates GHGSat's confidence in ABB's manufacturing capabilities, as ABB has the ability to build complex, high-performance optical payloads for hyperspectral Earth observations. This year, we will double our manufacturing infrastructure dedicated to space projects so that we can better serve the thriving private space sector. As we expand into other Earth observation missions, we strive to contribute to the success of our existing clients."

GHGSat CEO Stacphane Germain said, "Our collaboration began in 2018, showcasing ABB's technical expertise and manufacturing capabilities." This experience has enhanced our confidence in ABB's support for GHGSat's ability to expand in building proprietary high-resolution payloads. This partnership is key to significantly reducing greenhouse gas emissions and ultimately having specific impacts in the fight against climate change. "

For over 20 years, ABB has been a leader in the field of orbital gas sensing, starting with the development of the Canadian Space Agency's SCISAT mission payload, which describes the concentrations of over 70 different gas types from cloud tops to outer space, as low as one in a trillion.

ABB has also provided hyperspectral technology to the Japanese GOSAT program, which is the first to conduct global mapping of greenhouse gas sources and sinks in orbit at a regional scale, starting with the first satellite in 2009 and progressing to an improved version in 2018.

Today, ABB has manufactured an enhanced version of GHGSat's proprietary wide-angle Fabry Perot (WAP) interferometer, built upon this tradition, which can track the same infrared fingerprints of greenhouse gases. Through this approach, ABB applies its extensive expertise gained from early highly anticipated government space missions to private sector space, with a focus on civilian operable low latency satellite data.

Source: OFweek

Related Recommendations
  • Progress in Research on Intervalley Scattering and Rabi Oscillation Driven by Coherent Phonons

    Two dimensional transition metal chalcogenides have multi valley structures in their energy bands, giving them electron valley degrees of freedom, making them an ideal platform for studying multi body interactions. As the main mechanism of valley depolarization, the valley scattering process of free electrons or bound excitons is crucial for exploring excited state electron phonon interactions and...

    2023-10-10
    See translation
  • Relevant teams of the Chinese Academy of Sciences breakthrough the application difficulties of ultra compact gas laser system in special scenarios

    Recently, Liang Xu's team from the Laser Center of Anguang Institute, Chinese Academy of Sciences, Hefei Institute of Materia Medica, conducted research on corona discharge fluid control and its application in the gas laser system, proposed an electric field flow field coupling analysis model suitable for multi pin corona discharge scenarios, and revealed the flow velocity distribution characteris...

    2024-07-20
    See translation
  • The output power of high power femtosecond laser breaking through the key bottleneck of average power can reach the order of 100 watts

    High energy, high average power femtosecond laser due to the attosecond high order harmonic generation, precision processing and manufacturing, biomedical and national defense and other fields of extensive application needs, is the forefront of ultrafast super laser technology research in the past decade.Especially fiber laser due to stable and reliable operation characteristics, compact structure...

    2023-09-04
    See translation
  • Automated methods for background estimation in laser spectroscopy

    A new automated method for spectral background estimation in laser spectroscopy ensures the accuracy of quantitative analysis with minimal human intervention.When using laser-induced breakdown spectroscopy in spectral analysis, scientists may encounter various obstacles. The most common challenge faced by scientists when conducting elemental analysis is to optimize the interaction between the lase...

    2023-11-24
    See translation
  • New laser technology can achieve more efficient facial recognition

    Recently, the latest research report from FLEET, an interdisciplinary research team in Australia, revealed a significant leap in laser technology, achieving unprecedented levels of spectral purity.Spectral purity, which refers to the degree of matching of a single light frequency (or color) generated by a laser, is an important indicator for measuring laser performance. By using a scanning Fabry P...

    2024-06-24
    See translation