English

Scientists use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage

116
2023-12-07 14:21:14
See translation

Scientists at the City University of New York use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage. This technology is published in the journal Nature Nanotechnology and allows for encoding multiple bytes of data into the same nitrogen defect at multiple optical frequencies, without confusing the information content.

The common laser based techniques used for engraving/flipping information bits often encounter the so-called diffraction limit, which is the minimum area that the laser beam can focus on. In fact, this is also part of the reason why blue light technology does use blue laser technology: the wavelength of blue light is shorter than that of red light, so more information can be written in the same space. Due to the thinner blue lines, you can print four of them in the same space as the two red lines, automatically increasing the storage density per unit area.

However, what scientists have shown goes far beyond that. They demonstrated how to print in multiple colors within the same nitrogen defect, which means you can build as many bits from atoms as colors you can program separately.

"This means that we can store different information in different atoms of the same microscopic spot by using lasers with slightly different colors, thereby storing many different images in the same position on the diamond," said Tom Delord, a postdoctoral researcher at CCNY and co-author of the study. If this method can be applied to other materials or at room temperature, it may find its own way in computing applications that require high-capacity storage.

Perhaps the best way is to imagine a glass filled with water, where each color channel of the laser will drop a small piece of red, blue, or green ink into the available space. Different colors mean they have different densities, and the contents of green droplets can be separated from those of red droplets. Each color you have increases the amount of information encoded in the system - as long as you can separate different frequencies/densities when you want to read/extract content. Impressively, all these information layers can occupy the same physical space, thereby increasing storage density without interfering with each other.

"What we are doing is using narrowband lasers and low-temperature conditions to precisely control the charge of these color centers," Delord added. This new method enables us to write and read small amounts of data at a finer level than before, accurate to individual atoms.

The researchers demonstrated how their technology can print 12 different images within the same nitrogen defect, achieving a data density of 25GB per square inch. This is approximately equivalent to the 25GB of information that the entire Blu ray disc can hold in a single layer with a diameter of 12 centimeters.

In addition, this technology is non-destructive: information is not carved, but encoded into precisely charged atoms - within precisely defined nitrogen defects within the atoms. This is like lighting up small bubbles in a diamond. Then, information can be extracted from these illuminated bubbles, read, extracted, and re encoded over and over again. Diamonds seem to be eternal.

"By adjusting the beam to a slightly offset wavelength, it can remain in the same physical position but interact with different color centers to selectively change their charge - i.e. write data at sub diffraction resolution," said Monge, a postdoctoral researcher and Dr. CCNY involved in this study.

In theory, the use of diamond storage technology can guide us on a path where diamonds truly become people's best friends: personal treasures passed down from generation to generation, secret information encoded in tiny beams of light. A portable information storage medium used for providing and/or trading information during marriage.

For this technology, this is still a long way off, but the team believes they can eliminate the required low-temperature cooling when operating these color centers. They believe that their technology can one day be implemented at room temperature and can one day increase storage capacity at lower energy costs.

Source: Laser Net

Related Recommendations
  • FGI utilizes Fraunhofer's LiDAR technology for maritime surveying

    The highly respected Finnish Institute of Geospatial Studies will utilize the advanced LiDAR system developed by the Fraunhofer Institute of Physical Measurement Technology for future ocean surface surveys. Significant progress is expected in data quality and on-site measurement efficiency, and the state-owned research department is collaborating with Fraunhofer IPM on a joint project. They are jo...

    2024-02-14
    See translation
  • The University of California has developed a pioneering chip that can simultaneously carry lasers and photonic waveguides

    A team of computer and electrical engineers at UC Santa Barbara, in collaboration with several colleagues at Caltech and another colleague at Anello Photonics, has developed a first-of-its-kind chip that can carry both laser and photonic waveguides. In a paper published in the journal Nature, the team describes how they made the chip and how it worked during testing.With the advent of integrated c...

    2023-08-10
    See translation
  • Electron beam welding process for thick steel plate of turbine at Aachen Institute of Technology in Germany

    Researchers from the Welding Research Institute of Aachen University of Technology in Germany reported on the development of a stable welding process for electron beam welding of thick plates used in the construction of offshore wind turbines. The relevant research results were published in Materials Science and Engineering Technology under the title "Development of a robust welding process for el...

    2024-07-09
    See translation
  • Infinira launches an optical solution for 1.6 Tbps ICE-D data centers

    Infinira, an expert in optical network solutions, announced the launch of a high-speed data center optical transmission module based on single-chip indium phosphide (InP) photonic integrated circuit (PIC) technology. The company claims that the module will connect at a speed of 1.6 terabits per second (Tb/s), while reducing the cost and power consumption per bit.Yingfeilang stated that its data ce...

    2024-03-18
    See translation
  • Snapmaker introduces new 20W and 40W laser modules

    Snapmaker has opened pre-orders for 20W and 40W laser modules, which are significant upgrades to the modules available on existing Snapmaker machines.Snapmaker says that with the 40W module installed, you will be able to cut 15 mm basswood plywood at a time at a speed of 20 mm/SEC. With 20W, you will cut 10mm at a rate of 10mm/SEC. That's a lot more than Artisan and Snapmaker 2.0 - both are comp...

    2023-08-04
    See translation