English

Scientists use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage

1153
2023-12-07 14:21:14
See translation

Scientists at the City University of New York use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage. This technology is published in the journal Nature Nanotechnology and allows for encoding multiple bytes of data into the same nitrogen defect at multiple optical frequencies, without confusing the information content.

The common laser based techniques used for engraving/flipping information bits often encounter the so-called diffraction limit, which is the minimum area that the laser beam can focus on. In fact, this is also part of the reason why blue light technology does use blue laser technology: the wavelength of blue light is shorter than that of red light, so more information can be written in the same space. Due to the thinner blue lines, you can print four of them in the same space as the two red lines, automatically increasing the storage density per unit area.

However, what scientists have shown goes far beyond that. They demonstrated how to print in multiple colors within the same nitrogen defect, which means you can build as many bits from atoms as colors you can program separately.

"This means that we can store different information in different atoms of the same microscopic spot by using lasers with slightly different colors, thereby storing many different images in the same position on the diamond," said Tom Delord, a postdoctoral researcher at CCNY and co-author of the study. If this method can be applied to other materials or at room temperature, it may find its own way in computing applications that require high-capacity storage.

Perhaps the best way is to imagine a glass filled with water, where each color channel of the laser will drop a small piece of red, blue, or green ink into the available space. Different colors mean they have different densities, and the contents of green droplets can be separated from those of red droplets. Each color you have increases the amount of information encoded in the system - as long as you can separate different frequencies/densities when you want to read/extract content. Impressively, all these information layers can occupy the same physical space, thereby increasing storage density without interfering with each other.

"What we are doing is using narrowband lasers and low-temperature conditions to precisely control the charge of these color centers," Delord added. This new method enables us to write and read small amounts of data at a finer level than before, accurate to individual atoms.

The researchers demonstrated how their technology can print 12 different images within the same nitrogen defect, achieving a data density of 25GB per square inch. This is approximately equivalent to the 25GB of information that the entire Blu ray disc can hold in a single layer with a diameter of 12 centimeters.

In addition, this technology is non-destructive: information is not carved, but encoded into precisely charged atoms - within precisely defined nitrogen defects within the atoms. This is like lighting up small bubbles in a diamond. Then, information can be extracted from these illuminated bubbles, read, extracted, and re encoded over and over again. Diamonds seem to be eternal.

"By adjusting the beam to a slightly offset wavelength, it can remain in the same physical position but interact with different color centers to selectively change their charge - i.e. write data at sub diffraction resolution," said Monge, a postdoctoral researcher and Dr. CCNY involved in this study.

In theory, the use of diamond storage technology can guide us on a path where diamonds truly become people's best friends: personal treasures passed down from generation to generation, secret information encoded in tiny beams of light. A portable information storage medium used for providing and/or trading information during marriage.

For this technology, this is still a long way off, but the team believes they can eliminate the required low-temperature cooling when operating these color centers. They believe that their technology can one day be implemented at room temperature and can one day increase storage capacity at lower energy costs.

Source: Laser Net

Related Recommendations
  • Pressure sensing using dual color laser absorption spectroscopy

    The research team led by Professor Gao Xiaoming and Professor Liu Kun of the Chinese Academy of Sciences Hefei Institute of Physical Sciences recently designed a concentration independent pressure sensing technology for high-temperature combustion diagnosis. This method is based on dual color laser absorption spectroscopy.The results of this study have been published in Optics Letters.Aircraft eng...

    2024-03-09
    See translation
  • Iron Triangle releases fiber Bragg gratings and arrays based on multi-core fibers

    T35 multi-core fiber grating and T103 multi-core fiber grating arrays can be engraved into all fiber cores in physical locations, or only onto certain fiber cores.They can also have the same wavelength, or they can have all different wavelengths at the same physical location along the fiber or at different physical locations along the fiber.T35 and T103 are very suitable for projects that require...

    2023-10-28
    See translation
  • By 2030, the global market size of medical laser fiber will reach 1.369 billion US dollars

    According to a recent report by Congic Business Intelligence, the global medical laser fiber market is expected to grow significantly at a compound annual growth rate of 6.9% from 2023 to 2030. This growth is attributed to the increasing popularity of minimally invasive surgery worldwide.The medical laser fiber market is expected to expand strongly, reaching $1.369 billion by 2030. The market is v...

    2023-10-27
    See translation
  • Danish scientists have created solar cells based on selenium using a new laser annealing technique

    A team of scientists at the Technical University of Denmark has created a selene-based solar cell by replacing thermal annealing with a new laser annealing strategy."In our work, we investigated the potential of this laser annealing strategy specifically for selenium thin film solar cells, and we report a new world record for fill factor, a new world record for ideal factor, and the most advanced ...

    2023-09-06
    See translation
  • Scientists decipher the code for extending the lifespan of perovskite solar technology

    The latest research led by the University of Surrey shows that alumina (Al2O3) nanoparticles can significantly enhance the lifespan and stability of perovskite solar cells, extending the service life of such high-efficiency energy devices tenfold.Although perovskite solar cells have advantages such as low cost and light weight compared to traditional silicon-based technologies, their commercial po...

    03-03
    See translation