English

Scientists use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage

736
2023-12-07 14:21:14
See translation

Scientists at the City University of New York use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage. This technology is published in the journal Nature Nanotechnology and allows for encoding multiple bytes of data into the same nitrogen defect at multiple optical frequencies, without confusing the information content.

The common laser based techniques used for engraving/flipping information bits often encounter the so-called diffraction limit, which is the minimum area that the laser beam can focus on. In fact, this is also part of the reason why blue light technology does use blue laser technology: the wavelength of blue light is shorter than that of red light, so more information can be written in the same space. Due to the thinner blue lines, you can print four of them in the same space as the two red lines, automatically increasing the storage density per unit area.

However, what scientists have shown goes far beyond that. They demonstrated how to print in multiple colors within the same nitrogen defect, which means you can build as many bits from atoms as colors you can program separately.

"This means that we can store different information in different atoms of the same microscopic spot by using lasers with slightly different colors, thereby storing many different images in the same position on the diamond," said Tom Delord, a postdoctoral researcher at CCNY and co-author of the study. If this method can be applied to other materials or at room temperature, it may find its own way in computing applications that require high-capacity storage.

Perhaps the best way is to imagine a glass filled with water, where each color channel of the laser will drop a small piece of red, blue, or green ink into the available space. Different colors mean they have different densities, and the contents of green droplets can be separated from those of red droplets. Each color you have increases the amount of information encoded in the system - as long as you can separate different frequencies/densities when you want to read/extract content. Impressively, all these information layers can occupy the same physical space, thereby increasing storage density without interfering with each other.

"What we are doing is using narrowband lasers and low-temperature conditions to precisely control the charge of these color centers," Delord added. This new method enables us to write and read small amounts of data at a finer level than before, accurate to individual atoms.

The researchers demonstrated how their technology can print 12 different images within the same nitrogen defect, achieving a data density of 25GB per square inch. This is approximately equivalent to the 25GB of information that the entire Blu ray disc can hold in a single layer with a diameter of 12 centimeters.

In addition, this technology is non-destructive: information is not carved, but encoded into precisely charged atoms - within precisely defined nitrogen defects within the atoms. This is like lighting up small bubbles in a diamond. Then, information can be extracted from these illuminated bubbles, read, extracted, and re encoded over and over again. Diamonds seem to be eternal.

"By adjusting the beam to a slightly offset wavelength, it can remain in the same physical position but interact with different color centers to selectively change their charge - i.e. write data at sub diffraction resolution," said Monge, a postdoctoral researcher and Dr. CCNY involved in this study.

In theory, the use of diamond storage technology can guide us on a path where diamonds truly become people's best friends: personal treasures passed down from generation to generation, secret information encoded in tiny beams of light. A portable information storage medium used for providing and/or trading information during marriage.

For this technology, this is still a long way off, but the team believes they can eliminate the required low-temperature cooling when operating these color centers. They believe that their technology can one day be implemented at room temperature and can one day increase storage capacity at lower energy costs.

Source: Laser Net

Related Recommendations
  • Osram has received over 300 million euros in German investment to develop next-generation optoelectronic semiconductor technology

    Recently, ams Osram, a developer of smart sensors and transmitters, announced that it expects to receive over 300 million euros in funding from the German Federal Government and the Free State of Bavaria over the next five years.This funding is aimed at promoting Osram's development of the next generation optoelectronic semiconductor technology in Regensburg, Germany. The IPCEI funding in this bat...

    2023-09-25
    See translation
  • Rapid and convenient preparation of small-sized metal nanoparticles using microchip lasers

    Liquid pulse laser ablation is a reliable and versatile technique for producing metal nanoparticles in solution. Its advantages include no reducing agent, simple operation, high purity, no need for purification steps, and environmental processing conditions, making it the preferred method for traditional metal NP preparation.The widespread adoption of PLAL in scientific and industrial research has...

    2024-01-30
    See translation
  • Research Progress: Extreme Ultraviolet Photolithography

    Recently, the semiconductor industry has adopted Extreme Ultraviolet Lithography (EUVL) technology. This cutting-edge photolithography technology is used for the continuous miniaturization of semiconductor devices to comply with Moore's Law. Extreme ultraviolet lithography (EUVL) has become a key technology that utilizes shorter wavelengths to achieve nanoscale feature sizes with higher accuracy a...

    2024-12-09
    See translation
  • Tsinghua University develops efficient and stable perovskite quantum dot deep red light devices

    Semiconductor quantum dots have the advantages of high quantum yield, narrow emission spectrum, and compatibility with solution processes. They have shown broad application prospects and enormous economic value in the field of optoelectronic materials and devices, and related research has won the Nobel Prize in Chemistry in 2023.Compared with traditional II-VI and III-V quantum dots (such as CdSe,...

    03-18
    See translation
  • Xi'an Institute of Optics and Fine Mechanics has made significant progress in the field of metasurface nonlinear photonics

    Recently, the Research Group of Nonlinear Photonics Technology and Application in the Transient Optics Research Room of Xi'an Institute of Optics and Mechanics, Chinese Academy of Sciences has made important progress in the field of super surface nonlinear photonics. Relevant research results were published in Laser&Photonics Reviews (IF=9.8), the top journal of the first district of the Chine...

    04-30
    See translation