English

Molecular orientation is key: a new perspective on revealing electronic behavior using two-photon emission spectroscopy

795
2024-03-19 16:20:43
See translation

Organic electronics has aroused great interest in academia and industry due to its potential applications in OLEDs and organic solar cells, with advantages such as lightweight design, flexibility, and cost-effectiveness. These devices are made by depositing organic molecular thin films onto a substrate that serves as electrodes and exerting their effects by controlling electron transfer between the film and substrate. Therefore, understanding the electronic behavior at the interface between the substrate and the thin film, as well as the electronic properties of organic thin films, is crucial for the further development of organic electronics. In addition, simultaneous observation of photocarrier electrons and intramolecular photoexcitation will provide more insights into organic molecular thin films.

Although a technique called photoelectron spectroscopy has been used to study the static electronic states of organic molecule films in detail, accurately detecting the dynamic behavior of electrons attempting to express their functions in devices has always been challenging and hindering progress.

The research team led by Associate Professor Masahiro Shibuta from the Graduate School of Engineering at Osaka City University used two-photon emission spectroscopy, scanning tunneling microscopy, and low-energy electron diffraction to observe the electronic behavior and surface structure of triphenyl molecular thin films deposited on graphite substrates. The results indicate that TP molecules exhibit a special structure, which adsorbs on the substrate in a standing structure. Under light irradiation, two electrons are injected into TP molecules from the substrate, and photoexcited electrons in the molecular thin film are successfully observed simultaneously in a single sample. In addition, strong photoluminescence was also observed on thin films with a special structure consisting of only one layer of molecules, where the molecules were diagonally adsorbed onto the substrate, similar to the case of TP molecules. It is expected that these results will contribute to the development of new luminescent materials and the further development of functional organic electronic devices.

"2PPE spectroscopy is still a new method for evaluating electronic states, but its drawback is that although well optimized measurements are time-consuming, electronic states are sometimes well observed and sometimes not," said Professor Shibuta. Our research findings emphasize that the visibility of electronic states is closely related to the adsorption mode and electronic properties of molecules on the substrate. In other words, not only the type of molecules, but also their arrangement must be appropriately controlled to create a device that can fully demonstrate their functions. I am pleased that our research provides insights for the development of functional materials for practical applications.

Source: Laser Net

Related Recommendations
  • Aerosol jet printing can completely change the manufacturing of microfluidic devices

    Surface acoustic wave technology is renowned for its high precision and fast driving, which is crucial for microfluidics and affects a wide range of research fields. However, traditional manufacturing methods are time-consuming, complex, and require expensive cleanroom facilities.A new method overcomes these limitations by utilizing aerosol jet printing to create customized equipment with various ...

    2024-02-02
    See translation
  • This semiconductor integrator launches laser chip and array technology

    Recently, Sivers Semiconductors, a well-known chip and integration module supplier in Sweden, announced that its subsidiary Sivers Photonics is partnering with ecosystem partners to showcase its advanced laser chip and array technology at the OFC conference in Santiago.The first on-site demonstration used Ayar Labs optical I/O and CW-WDM MSA compatible SuperNova ™ The light source is powered...

    2024-03-29
    See translation
  • Scientists decipher the code for extending the lifespan of perovskite solar technology

    The latest research led by the University of Surrey shows that alumina (Al2O3) nanoparticles can significantly enhance the lifespan and stability of perovskite solar cells, extending the service life of such high-efficiency energy devices tenfold.Although perovskite solar cells have advantages such as low cost and light weight compared to traditional silicon-based technologies, their commercial po...

    03-03
    See translation
  • What is field assisted additive manufacturing?

    Dr. Tan Chaolin from the Singapore Institute of Manufacturing Technology, in collaboration with China University of Petroleum, Shanghai Jiao Tong University, Princeton University, University of Malta, Huazhong University of Science and Technology (Professor Zhang Haiou), University of California, Irvine, Hunan University, and EPM Consulting, published an article titled "Review on Field Assisted Me...

    2024-07-29
    See translation
  • The research team has developed a mechanical luminescent touch screen that can work underwater

    The optical properties of afterglow luminescent particles in mechanical luminescence and mechanical quenching have attracted much attention in various technological applications. A group of researchers from Pohang University of Science and Technology has attracted attention by developing an optical display technology with ALP that can write and erase messages underwater.The team is composed of Pro...

    2024-03-08
    See translation