English

Fraunhofer ISE develops a faster laser system for wafer processing

1247
2023-12-23 14:00:27
See translation

By using a new type of laser, the processing speed of wafers can be 10 to 20 times faster than before. This is the result of a research project at the Fraunhofer Institute for Solar Systems in Germany.

Researchers have developed a prototype that can use ultraviolet waves to carve the most intricate structures on silicon wafers. The new system concept enables solar cell manufacturers to perform laser processing at the highest speed without compromising on the size of the structure or processing field.

In order to produce photovoltaic cells from wafers, wafers must be metallized. In this step, the fine channels are grooved at the top of the cell. Silver paste enters the channel and is then used as a conductor track. The speed at which the channel enters the silicon wafer is crucial for battery production to further reduce production costs.

The laser provided by Fraunhofer ISE can draw 1800 lines per second. This is 10 to 20 times faster than so-called galvanometer scanners, which are typically used for this purpose. The laser has a high repetition rate of 10 megahertz and a maximum pulse energy of 5.6 microjoules.

This laser can also process M12 format wafers with a side length of 210 millimeters. The laser engraving channel is only 15 microns wide. This is 30% finer than the currently commercially used ultraviolet laser. Compared to the very common infrared laser, the channel of the new laser is three times larger. A finer channel can reduce the use of silver paste, thereby helping to further reduce production costs.

"The unique feature of the demonstrator design is that large workpieces can be processed very quickly and the structural dimensions are small," said Jale Schneider, project manager at Fraunhofer ISE. The idea that you can only have two of these three characteristics at the same time - large image field, rapid processing, and fine structure - is deeply rooted in the laser material processing industry. With this system, we have achieved these three aspirations simultaneously.

German laser expert Edgewave GmbH has developed a prototype. Moewe Optical Solutions built a polygon scanner for this project. At Fraunhofer ISE, the team combined a polygonal scanner, laser, and axis for beam guidance into a system. The group now hopes to research new processes to increase production.

Source: Laser Net

Related Recommendations
  • Xi'an Institute of Optics and Fine Mechanics has made new progress in the field of metasurface nonlinear photonics

    Recently, the Research Group of Nonlinear Photonics Technology and Applications in the State Key Laboratory of Transient Optics and Photonics Technology of Xi'an Institute of Optics and Fine Mechanics has made important progress in the field of super surface nonlinear photonics. Relevant research results were published in the internationally famous journal Nanoscale Horizons. The first author of t...

    2024-09-27
    See translation
  • Outstanding Optical Technologies at the 2025 Western Optoelectronics Exhibition in the United States

    In the long history of technological development, every major breakthrough in technology is like a shining star, illuminating the path forward for humanity. At the Photonics West conference in 2025, numerous breakthroughs in cutting-edge photonics technologies attracted the attention of the global academic and industrial communities. Several important technological advancements reported in this ex...

    02-12
    See translation
  • This semiconductor integrator launches laser chip and array technology

    Recently, Sivers Semiconductors, a well-known chip and integration module supplier in Sweden, announced that its subsidiary Sivers Photonics is partnering with ecosystem partners to showcase its advanced laser chip and array technology at the OFC conference in Santiago.The first on-site demonstration used Ayar Labs optical I/O and CW-WDM MSA compatible SuperNova ™ The light source is powered...

    2024-03-29
    See translation
  • POSTECH launches a new type of fiber optic fusion splicer FS-23 series

    FOSTEC announced on the 8th that a new type of fiber fusion splicer has been launched. The newly launched FS-23 series is a fusion splicer that can be used for fiber optic operations in long-distance optical networks and CCTV optical networks. It not only has a small size and light weight, but also has a sturdy design and a long-lasting battery, which can provide high-precision performance.A perso...

    2024-01-08
    See translation
  • The UK team collaborated to evaluate epitaxial materials for surface-coupled lasers

    Sivers Photonics, a leading UK-based supplier of optical fiber communications and III-V semiconductor Photonics devices, has announced that it has received an initial order from UK-based laser developer Vector Photonics to evaluate epitaxial materials for a new next-generation surface-coupled laser project.The order, which includes laser manufacturing and life testing, will be the first time the t...

    2023-09-11
    See translation