English

High sensitivity visualization of ultrafast carrier diffusion using a wide field holographic microscope

211
2023-12-25 14:16:07
See translation

A sketch of the imaging and holographic parts of a transient holographic microscope, including a pulse sequence, to illustrate the signal modulation method. By imaging the pinhole array at the sample position, a diffraction limited excitation spot array can be created, allowing for the simultaneous collection of transient data around 100 excitation spots.

Femtosecond transient microscopy is an important tool for studying the ultrafast transport characteristics of excited states in solid samples. Most implementations are limited to photoexcitation of a single diffraction limit point on the sample and tracking the temporal evolution of subsequent carrier distribution, thus covering a very small sample area.

Recently, scientists from Italy and Spain have demonstrated how to construct an all optical phase-locked camera by using off-axis holography, significantly increasing the field of view of ultrafast microscopes. The camera decouples the signal demodulation speed from the maximum detector frame rate.

In this original work published in the journal Ultrafast Science, researchers demonstrated simultaneous transient imaging of dozens of individual nanoobjects, with the entire field of view excitation being desirable. It is not yet clear how to apply new holographic techniques in solid-state samples that require diffraction limit excitation. Ideally, a diffraction limited excitation point array covering the entire field of view will be generated, so that multiple points in the large sample area can be detected simultaneously.

The article "High sensitivity visualization of ultrafast carrier diffusion using a wide field holographic microscope" demonstrates how to achieve this feature by imaging a pinhole array at the sample position. This not only helps to obtain statistical information about sample photophysics, but also for uniform samples, the signals of all light spots can be averaged, greatly improving the signal-to-noise ratio.

Source: Laser Net

Related Recommendations
  • From Colored Glass Windows to Lasers: Nanogold Changes Light

    For a long time, craftsmen have been fascinated by the bright red color produced by gold nanoparticles scattered in colored glass masterpieces. The quantum origin of this optical miracle has always been mysterious, until modern advances in nanoengineering and microscopy revealed the complexity of plasma resonance.Now, researchers are preparing to push nano plasma technology, which was once used fo...

    2024-01-02
    See translation
  • APE 2025 is about to take place

    The Asia Optoelectronic Expo 2025 (APE 2025) will be held from February 26 to 28, 2025 at the Marina Bay Sands Convention and Exhibition Centre in Singapore. It covers products such as information and communication, optics, lasers, infrared, sensing, display, quantum, and is a one-stop optoelectronic comprehensive platform for the optoelectronic industry and application fields; The exhibition focu...

    02-18
    See translation
  • Theoretical physicist Farok Miwivar studied the interaction between two sets of luminescent atoms in a quantum cavity

    Theoretical physicist Farok Miwivar studied the interaction between two sets of luminescent atoms in a quantum cavity - a quantum cavity is an optical device composed of two excellent small mirrors that can capture light in a small area for a long time.This model and its predictions can be used for the next generation of superradiance lasers. They can be used and observed in cutting-edge cavity/wa...

    2024-02-21
    See translation
  • Ruifeng high power ultraviolet laser will become an indispensable tool in the production of thin film solar cells in the future

    With the rise of clean energy and the enhancement of environmental awareness, thin film solar cells are gradually replacing traditional silicon-based solar cells as an efficient energy conversion device.However, to achieve efficient solar cell conversion rates, the key is to ensure that thin film solar cells have clear edges and maximize light absorption. In this regard, the unique advantages of h...

    2023-09-08
    See translation
  • TRUMPF machine cooler saves 50 percent energy

    Ditzingen, 05. March 2025 – At its in-house exhibition INTECH, high-tech company TRUMPF is showcasing a new cooler for its laser cutting machines. The new unit is capable of reducing energy consumed during the cooling process and uses fifty percent less energy than conventional solutions. Unlike conventional coolers, the main components of this new solution— such as pumps, fans and compressors— ar...

    03-14
    See translation