English

Dutch satellite instruments have achieved milestone achievements in transmitting laser data to Earth

1172
2024-01-25 10:45:47
See translation

TNO wrote that this is the first time Dutch technology has been used to send data from a satellite to a ground station press release on Earth. This technology uses invisible laser signals to achieve faster and safer data flow compared to ubiquitous communication radio frequencies.

Kees Buijsrogge, Director of TNO Space, said, "This critical milestone marks a significant achievement for the Netherlands and Europe in advancing technological sovereignty within a strong NATO, as it will achieve faster and safer broadband connectivity. This is a temporary result of the emerging Dutch industry's collaborative efforts dedicated to optical satellite communication.".

Almost all connections in daily life, such as Wi Fi, Bluetooth, or 5G, are based on radio frequency waves. Due to the increase in data consumption, this radio spectrum is slowly filling up, causing scarcity and interference. Laser satellite communication provides a solution as it can send data faster and safer through invisible laser signals. The radio frequency can reach speeds of several hundred megabits, and in some cases can reach several thousand megabits per second.

The speed of laser communication has increased by 100 to 1000 times. Even at lower speeds, laser communication links are interesting because the system is smaller, lighter, and more energy-efficient, which is crucial for space applications. It is also safer because it uses a very narrow optical laser beam instead of a wide radio signal. This makes eavesdropping more difficult and interference can be quickly detected.

The laser communication system SmallCAT was launched by SpaceX on a satellite operated by the Norwegian Space Agency in April 2023. Since then, TNO has been preparing to establish a connection between satellites flying in low Earth orbit and optical ground stations in The Hague and Tenerife Island. In such an experiment, the ground station first sends a signal to the satellite, and the laser communication system on the satellite must find the signal through its overpass. Then, it sends the laser back to the Earth that the ground station needs to capture. This is very challenging as the satellite flies at a speed of 28000 kilometers per hour at an altitude of 500 kilometers.

In several experiments, TNO successfully found two ground stations from space and sent back and recaptured the laser beam with extremely high accuracy. Once the link is established, data is transmitted from satellite instruments and received by the optical ground station in The Hague at a maximum data rate of 1 gigabit per second. The ground station of TNO in The Hague was jointly developed by TNO and Airbus Netherlands. This is the first time such a compact satellite instrument made in the Netherlands has achieved this. It indicates that the terminals on the satellite and the ground station are working, and they can also be found under real conditions.

Source: Laser Net

Related Recommendations
  • Construction of Advanced New Laser Research Centers in American Universities

    The ATLAS R&D center is expected to be completed by mid-2026!A powerful new laser research facility located on the Foothills campus of Colorado State University will begin construction this month. The facility is planned to be put into use in mid-2026 and is the result of 40 years of laser development research at Colorado State University. It is a collaboration with the Fusion Energy Science P...

    2024-10-30
    See translation
  • NASA will demonstrate laser communications on the space station to improve space communications capabilities

    Recently, in order to improve the National Aeronautics and Space Administration (NASA) space communications capabilities, NASA plans to send a technology demonstration called "Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal (ILLUMA-T)" to the space station in 2023.ILLUMA-T and the Laser Communications Relay Demonstration (LCRD), launched in December 2021, will together comp...

    2023-09-04
    See translation
  • NSF funding for collaboration between researchers from Syracuse University and Cosmic Explorer

    Billions of years ago, in a distant galaxy, two black holes collided, triggering one of the most extreme cosmic events in the universe. The power of this phenomenon is so great that it distorts the structure of spacetime, emitting ripples called gravitational waves.These waves will eventually be detected on Earth by the Advanced Laser Interferometer Gravity Wave Observatory (LIGO) detector, and te...

    2023-10-13
    See translation
  • Chip based comb laser illumination and unlocking of new applications

    Researchers have shown that dissipative Kerr solitons (DKS) can be used to create chip based optical frequency combs with sufficient output power for optical atomic clocks and other practical applications. This progress may lead to chip based instruments being able to perform precise measurements that were previously only possible in a few specialized laboratories.Gr é gory Moille from the ...

    2023-08-30
    See translation
  • The Mysteries of Atmospheric Chemistry: Transient Absorption Spectroscopy Study Using FERGIE

    backgroundDr. Daniel Stone's research team from the University of Leeds in the UK is primarily focused on the study of oxidation reactions in the atmosphere and combustion processes. Dr. Stone is particularly interested in the chemical reaction processes of active substances that can control atmospheric composition and fuel combustion processes, such as hydroxide (OH), peroxide (HO2), and Crigee i...

    2024-03-06
    See translation