English

The rare decay of the Higgs boson may point to physics beyond the standard model

1145
2024-01-26 14:10:32
See translation

Particle physicists have detected for the first time a new decay of the Higgs boson, revealing subtle differences predicted by the standard model and potentially pointing to new physics beyond it. The research results are published in the journal Physical Review Letters.

The theoretically predicted Higgs boson since the 1960s was finally discovered in the European CERN laboratory in 2012. As a quantum field, it permeates the entire space and other particles move through it, gaining mass through their interaction with the Higgs field, which can be roughly imagined as a resistance to their motion.
Many properties of the Higgs boson, including how it interacts with other particles and their associated fields, have been measured to be consistent with the predictions of the standard model.

However, an unexplored mode of Higgs decay is theoretically predicted, where Higgs bosons occasionally decay and produce photons, namely photoquanta and Z-bosons, which are uncharged particles that transmit weak forces with two W-bosons.

Scientists from the European Center for Nuclear Research ATLAS and CMS collaborated to search for this particular Z+photon Higgs decay using proton proton collision data obtained from Run 2 from 2015 to 2018. The Large Hadron Collider at the European Center for Nuclear Research is a high-energy particle accelerator located near Geneva, Switzerland. It circulates protons in opposite directions while causing collisions at specific detector points, occurring millions of times per second.

In this operation, the energy of the collision between two protons was 13 trillion electron volts, slightly lower than the current maximum value of the machine, which is 2.1 microjoules in more relevant units. This is approximately the kinetic energy of an ordinary mosquito, or a grain of salt, traveling one meter per second.

Theoretical predictions suggest that every 10000 decays, the Higgs boson should decay into the Z boson and photon, which is the rarest decay in the standard model. It first produces a pair of top quarks or a pair of W bosons, and then they decay into Z and photons themselves.

Atlas/CMS collaboration, with the work of over 9000 scientists, has discovered the "branching ratio", which is the decay fraction of 34 decays per 10000 cycles, plus or minus 11 decays per 10000 cycles -2.2 times the theoretical value.
The measured score is too large -3.4 standard deviations higher than the theoretical value, but this number is still too small to rule out statistical luck. However, the relatively large differences suggest the possibility of meaningful differences from theory, which may be due to the fact that new particles outside the standard model are mediators beyond top quarks and W bosons.

One possibility of physics that goes beyond the standard model is supersymmetry, which assumes a symmetric relationship between half spin particles and integer spins, with each known particle having a partner with a spin difference of half an integer.

Many theoretical physicists have long been advocates of supersymmetry because it can solve many of the challenges that plague the standard model, such as the huge difference between the strength of weak forces and gravity, or why the mass of the Higgs boson, about 125 gigahertertons per volt, is much smaller than the large unified energy scale of about 1016.

Source: Laser Net

Related Recommendations
  • Research progress and prospects of CFRP laser surface cleaning

    Researchers from Materials Science at Harbin Institute of Technology, Zhengzhou Research Institute at Harbin Institute of Technology, and Key Laboratory of Microsystems and Microstructure Manufacturing at Harbin Institute of Technology, Ministry of Education, reviewed and reported on the research progress of laser surface cleaning of carbon fiber reinforced polymer composites (CFRP). The relevant ...

    03-06
    See translation
  • Continuation of the Term of President and CEO of Jena Germany

    Recently, the supervisory board of Jenoptik, a leading German laser technology company, announced an important decision: to extend and confirm the term of Dr. Stefan Traeger as Chairman of the Executive Board, with a new term of three years starting from July 1, 2025, and the contract validity period correspondingly extended to June 30, 2028. Dr. Stefan Traeger has been serving as the President ...

    2024-09-06
    See translation
  • The team has developed a method for integrating an electro-optic modulator device on the end face of a single-mode fiber optic jumper

    Electro optical modulators (EOMs) are the main components in optical communication networks, which can control the amplitude, phase, and polarization of light through external electrical signals.In order to achieve ultra compact and high-performance EOM, most of today's research focuses on on-chip devices that combine semiconductor technology with state-of-the-art tunable materials. However,...

    2023-08-24
    See translation
  • The research team describes laser direct writing of single-photon optical fiber integrated multimode storage on a communication band chip

    Figure: Experimental setup.Quantum memory that relies on quantum band integration is a key component in developing quantum networks that are compatible with fiber optic communication infrastructure. Quantum engineers and information technology experts have yet to create such a high-capacity network that can form integrated multimode photonic quantum memories in communication frequency ban...

    2023-08-04
    See translation
  • Luxiner launches modular laser processing solution Multiscan HE

    Recently, Luxiner, the leading brand in the field of laser technology in the UK, announced the launch of MultiSCAN ®  The latest members of CO2 laser systems - Multiscan HE 10i, 15i, and 25i. These new systems are presented in a completely independent form, integrating power, PC, and software, providing users with comprehensive solutions.The Multiscan HE 10i, 15i, and 25i not only inherit the indu...

    2024-06-07
    See translation