English

In situ bubble point measurement using spectroscopy

7
2024-01-31 14:27:22
See translation

Develop and research a new downhole bubble point pressure measurement technology suitable for black oil and volatile oil to enhance well analysis using spectroscopy.

Representative fluid characteristics are required for a wide range of oilfield lifespans, such as the initial scale and production planning of reservoir hydrocarbon reserves. Fluid characteristics are usually obtained from laboratory sample analysis, but some fluid characteristics can also be measured in situ using formation testers. A new downhole bubble point technology has been developed to supplement traditional well analysis measurements. Measure the initial pressure of bubbles on reservoir fluids for early estimation and sample representativeness.

The method outlined consists of two parts: bubble generation and bubble point pressure detection. After separating a certain volume of uncontaminated fluid in the fluid analyzer module of the formation tester, use a downhole pump to reduce the streamline pressure at a low and accurate flow rate. Use spectral measurements at a data sampling rate of 128 ms to detect bubble initiation. Even very small bubbles can scatter visible and near-infrared light passing through the pipeline, ensuring the detection of bubble formation. The streamline pressure reduction experiment can be conducted within a few minutes, at any time, on a series of well bodies.

Underground bubble point pressure measurements were conducted on four different fluids. The gas/oil ratio range for testing fluids is 90 m3/m3 to 250 m3/m3. In each case, the downhole bubble points obtained from the streamline decompression experiment match the saturation determined by constant component expansion in the laboratory, reaching within 350 kPa. Firstly, use near-infrared spectroscopy to detect the initiation of bubbles. As the pressure decreases, the size of bubbles coming out of the solution will increase, and the presence of bubbles can be recognized by other downhole sensors, such as live density and fluorescence, manifested as signal scattering. For each fluid studied, the pressure and density measurements obtained when the streamline pressure is higher than the saturation pressure are also used to calculate the compressibility of pressure changes with pressure.

This type of downhole bubble point pressure measurement can optimize real-time sampling operations, achieve fluid classification and separation research, and can be used for early elucidation of fluid state equation models. This technology is suitable for black oil and volatile oil. For heavy oil with very low gas content, the accuracy of this technology may be reduced due to the energy required to overcome nucleation barriers.

Previously recorded techniques typically infer downhole bubble points by analyzing the rate of change in streamline pressure. For the first time, it demonstrated the beginning of directly detecting the appearance of bubbles without the need for additional specialized downhole equipment, and was validated based on laboratory measurement results. The measurement accuracy was achieved by combining a 128 millisecond spectrum with a low and accurate decompression rate.

Source: Laser Net

Related Recommendations
  • The Glory of Laser and the Odyssey of "Deep Technology"

    The British engineering and construction company Metz Group has a delegation in Spain to be responsible for the expansion and renovation of the central laser facility at Rutherford Appleton Laboratory near Oxford. More commonly, the construction of the powerful laser Vulcan 20-20 has just been obtained, with a delivery date of 2029.It will emit a main excitation beam that is billions of times larg...

    2023-12-09
    See translation
  • The laser direct writing lithography equipment market is expected to reach $160.25 million in 2029 with a compound growth rate of 5.21%

    Lithography machine is the key equipment for making high precision mask plate. Using a very fine laser beam, the highly precise line pattern is drawn on the mask substrate under the control of an extremely precise automatic control system.Laser direct writing is to use a laser beam with variable intensity to implement variable dose exposure on the resist material (photoresist) on the subst...

    2023-08-04
    See translation
  • Telescope Discovers Record breaking Galaxy Space Laser

    A powerful telescope in South Africa has detected a space laser 5 billion light-years away from Earth, known as the "megamaser". Scientists named it Nkalakatha, which means "big boss" in Zulu language.Nkalakatha is the farthest hydroxyl giant detected so far, discovered by the MeerKAT telescope on the first night of the survey, which is expected to include 3000 hours of observation. The team of sc...

    03-09
    See translation
  • Researchers use spectroscopic methods to characterize ancient Egyptian mining gemstones

    In a recent study published in the journal AIP Advances, researchers used molecular and elemental spectroscopy techniques such as laser induced breakdown spectroscopy (LIBS), Raman spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy to characterize mines in ancient Egypt.In this study, researchers examined various gemstones that can be traced back to the era of the pharaohs. The team...

    2023-08-31
    See translation
  • Researchers from Columbia University in New York reported the latest research on reverse laser sintering of metal powders

    Researchers from Columbia University in New York reported the latest research on reverse laser sintering of metal powders. The related achievements were published in Scientific Reports under the title "Invested laser sintering of metal powder".The researchers demonstrated the ability of reverse laser sintering technology to manufacture metal powder parts. Researchers first deposit a layer of coppe...

    01-29
    See translation