English

Germany has developed a fast, accurate, and wear-resistant laser drilling CFRP process

1211
2024-03-06 14:02:22
See translation

Recently, scientists from the Hanover Laser Center (LZH) in Germany announced the successful development of an automated laser drilling process that can promote the processing of carbon fiber reinforced plastics (CFRP). They stated that this is particularly valuable in applications such as lightweight structures and sound insulation.

Composite materials such as carbon fiber reinforced plastics (CFRP) are excellent in lightweight structures and are also used in automotive and aircraft structures, among others. In order to simplify the processing of CFRP and sandwich materials, LZH scientists, together with Invent and KMS technology centers, have developed an innovative process with relevant system settings.

In this process, the laser beam is divided into parts by specially designed diffractive optical elements, causing it to hit multiple positions on the material and generate multiple holes simultaneously.

In an ideal scenario, this can be achieved with up to 25 partial beams of light, reducing the drilling time to 25 times the original time, with each hole lasting less than one tenth of a second, which traditional methods cannot achieve, even for larger holes.

Through this process, scientists are able to create holes with a diameter of only 1.2-0.25mm. This makes them smaller than the holes currently achieved using traditional mechanical methods in sandwich and CFRP materials. The optical mechanical device manufactured by KMS technology center can achieve high flexibility in aperture and mode without the need for tool replacement.

Laser micro drills are also very interesting in the aviation field. For example, in order to reduce aircraft noise emissions, the engine uses sound-absorbing cladding components. This type of component is usually made of CFRP or CFRP sandwich material, and then provides many small holes on a large area.

Laser micro drilling is suitable for acoustic drilling because it is non-contact and therefore has no pressure or wear. This eliminates high costs caused by drill bit wear and quality issues caused by dull drilling. In acoustic testing, project partner Invent evaluated the sound insulation performance of laser drilling sandwich panels as "very good".

The above project is called "Microdrilling of Sandwich Materials: Development of Laser Technology" (miBoS), funded by the Federal Ministry of Economy and Climate Protection of Germany.

Source: OFweek

Related Recommendations
  • SEMA 2023: Huali's Easy Level Floating Free Laser Fuel Level Transmitter

    Winning the SEMA Best Engineering New Product Award is not an easy task. Therefore, it said a lot about Huali's new non floating fuel transmitter bringing hardware home. The Easy Level fuel level sender is a brand new design that does not rely on traditional float arm settings, but uses a frikken laser beam to measure the fuel level in the tank.More precisely, Easy Level uses LiDAR technology to m...

    2023-11-03
    See translation
  • Dr. Kenichi Iga wins awards in the field of lasers

    Dr. Kenichi Iga (85), Professor Emeritus at Tokyo University of Science, has been awarded the 2025 Honda Prize. The Honda Foundation announced that the award recognizes his outstanding contributions in proposing and advancing the commercialization of “surface-emitting lasers.” This type of semiconductor laser, characterized by its miniaturization, high-density integration, and low power consumptio...

    11-07
    See translation
  • Breaking the production record! Laser and lithium achieve ammonia production under environmental conditions for the first time

    The application of laser technology has revolutionized the methods of nitrogen fixation, providing a new method for synthesizing ammonia under environmental conditions. Recently, researchers have used commercial carbon dioxide lasers for the first time to disrupt the nitrogen nitrogen triple bond, providing a new green alternative to the Haber Bosch process.It is reported that the international re...

    2023-10-16
    See translation
  • An efficient femtosecond pulse amplification technique for extracting the maximum stored energy in fiber laser amplifiers

    The well-known journal Optica published a paper in November 2024 titled "Near complete extraction of maximum stored energy from large core fibers using coherent pulse stacking amplification of femtosecond pulses"The authors of the paper were the University of Michigan, Lawrence Berkeley National Laboratory, Peking University, and the German Institute of Synchrotron Radiation.The specific technique...

    2024-11-13
    See translation
  • Tiny yet Powerful: How Lasers on Chips Change the Game Rules of Photonics

    Chip level ultrafast mode-locked laser based on nanophotonic lithium niobate.Researchers have created a compact mode-locked laser integrated into a nanophotonic platform, capable of generating high-power and ultrafast optical pulses. The breakthrough in miniaturization of MLL technology can significantly expand the application of photonics.Innovation in mode-locked laser technologyTo improve the t...

    2023-12-27
    See translation