English

Germany has developed a fast, accurate, and wear-resistant laser drilling CFRP process

1288
2024-03-06 14:02:22
See translation

Recently, scientists from the Hanover Laser Center (LZH) in Germany announced the successful development of an automated laser drilling process that can promote the processing of carbon fiber reinforced plastics (CFRP). They stated that this is particularly valuable in applications such as lightweight structures and sound insulation.

Composite materials such as carbon fiber reinforced plastics (CFRP) are excellent in lightweight structures and are also used in automotive and aircraft structures, among others. In order to simplify the processing of CFRP and sandwich materials, LZH scientists, together with Invent and KMS technology centers, have developed an innovative process with relevant system settings.

In this process, the laser beam is divided into parts by specially designed diffractive optical elements, causing it to hit multiple positions on the material and generate multiple holes simultaneously.

In an ideal scenario, this can be achieved with up to 25 partial beams of light, reducing the drilling time to 25 times the original time, with each hole lasting less than one tenth of a second, which traditional methods cannot achieve, even for larger holes.

Through this process, scientists are able to create holes with a diameter of only 1.2-0.25mm. This makes them smaller than the holes currently achieved using traditional mechanical methods in sandwich and CFRP materials. The optical mechanical device manufactured by KMS technology center can achieve high flexibility in aperture and mode without the need for tool replacement.

Laser micro drills are also very interesting in the aviation field. For example, in order to reduce aircraft noise emissions, the engine uses sound-absorbing cladding components. This type of component is usually made of CFRP or CFRP sandwich material, and then provides many small holes on a large area.

Laser micro drilling is suitable for acoustic drilling because it is non-contact and therefore has no pressure or wear. This eliminates high costs caused by drill bit wear and quality issues caused by dull drilling. In acoustic testing, project partner Invent evaluated the sound insulation performance of laser drilling sandwich panels as "very good".

The above project is called "Microdrilling of Sandwich Materials: Development of Laser Technology" (miBoS), funded by the Federal Ministry of Economy and Climate Protection of Germany.

Source: OFweek

Related Recommendations
  • Accelerating electrons by emitting laser light into a nanophotonic cavity

    The laser driven particle accelerator on silicon chips was created by two independent research groups. With further improvements, this dielectric laser accelerator can be used in medicine and industry, and even in high-energy particle physics experiments.Accelerating electrons to high energy is usually accomplished over long distances in large and expensive facilities. For example, the electron ac...

    2023-10-28
    See translation
  • The rare decay of the Higgs boson may point to physics beyond the standard model

    Particle physicists have detected for the first time a new decay of the Higgs boson, revealing subtle differences predicted by the standard model and potentially pointing to new physics beyond it. The research results are published in the journal Physical Review Letters.The theoretically predicted Higgs boson since the 1960s was finally discovered in the European CERN laboratory in 2012. As a quan...

    2024-01-26
    See translation
  • IMEC Introduces World's First 110GHz+ C-Band GeSi EA Modulator

    The nanoelectronics research center IMEC from Belgium announced the successful completion of a significant trial: the fabrication of a 110GHz C-band GeSi electro-absorption modulator on a 300mm silicon photonics platform.Achieving a net data rate of 400Gb/s per lane and optimized for compactness, low latency, and high energy efficiency, imec says its modulator “establishes the foundation for next-...

    10-09
    See translation
  • Coherent Unifies Ultrafast Laser Business at the Glasgow Center of Excellence

    Recently, Coherent, an American laser system solution provider, announced that all of the company's ultra fast laser business, including the manufacturing of all picosecond and femtosecond lasers, will be unified in one place: the Ultra Fast Center of Excellence in Glasgow, Scotland.Previously, Coherent's Ultra Fast Center of Excellence located in Glasgow was already a state-of-the-art mass produc...

    2023-09-22
    See translation
  • The output power of high power femtosecond laser breaking through the key bottleneck of average power can reach the order of 100 watts

    High energy, high average power femtosecond laser due to the attosecond high order harmonic generation, precision processing and manufacturing, biomedical and national defense and other fields of extensive application needs, is the forefront of ultrafast super laser technology research in the past decade.Especially fiber laser due to stable and reliable operation characteristics, compact structure...

    2023-09-04
    See translation