English

Germany has developed a fast, accurate, and wear-resistant laser drilling CFRP process

1245
2024-03-06 14:02:22
See translation

Recently, scientists from the Hanover Laser Center (LZH) in Germany announced the successful development of an automated laser drilling process that can promote the processing of carbon fiber reinforced plastics (CFRP). They stated that this is particularly valuable in applications such as lightweight structures and sound insulation.

Composite materials such as carbon fiber reinforced plastics (CFRP) are excellent in lightweight structures and are also used in automotive and aircraft structures, among others. In order to simplify the processing of CFRP and sandwich materials, LZH scientists, together with Invent and KMS technology centers, have developed an innovative process with relevant system settings.

In this process, the laser beam is divided into parts by specially designed diffractive optical elements, causing it to hit multiple positions on the material and generate multiple holes simultaneously.

In an ideal scenario, this can be achieved with up to 25 partial beams of light, reducing the drilling time to 25 times the original time, with each hole lasting less than one tenth of a second, which traditional methods cannot achieve, even for larger holes.

Through this process, scientists are able to create holes with a diameter of only 1.2-0.25mm. This makes them smaller than the holes currently achieved using traditional mechanical methods in sandwich and CFRP materials. The optical mechanical device manufactured by KMS technology center can achieve high flexibility in aperture and mode without the need for tool replacement.

Laser micro drills are also very interesting in the aviation field. For example, in order to reduce aircraft noise emissions, the engine uses sound-absorbing cladding components. This type of component is usually made of CFRP or CFRP sandwich material, and then provides many small holes on a large area.

Laser micro drilling is suitable for acoustic drilling because it is non-contact and therefore has no pressure or wear. This eliminates high costs caused by drill bit wear and quality issues caused by dull drilling. In acoustic testing, project partner Invent evaluated the sound insulation performance of laser drilling sandwich panels as "very good".

The above project is called "Microdrilling of Sandwich Materials: Development of Laser Technology" (miBoS), funded by the Federal Ministry of Economy and Climate Protection of Germany.

Source: OFweek

Related Recommendations
  • The UK government plans £ 10.5 million to support laser wire feeding

    On the first day of the 2025 Paris Air Show, the UK government announced a £ 250 million investment to support sustainable aerospace programs, with £ 48.5 million earmarked for funding additive manufacturing projects led by Airbus and GKN Aerospace. Among them, £ 10.5 million will be injected into the GKN Integrated System Level Aerospace Structure Assembly (ISLAA) program, with the aim of utilizi...

    06-23
    See translation
  • Shanghai Institute of Optics and Fine Mechanics has achieved beam splitting vortex control and interference detection for the first time in the 46.9nm wavelength band

    Recently, Associate Researcher Zhang Junyong from the High Power Laser Physics Joint Laboratory of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, together with Professor Zhao Yongpeng's research group from Harbin Institute of Technology and Professor Zhan Qiwen's research group from Shanghai University of Technology, completed the experimental verification of 46....

    2024-10-17
    See translation
  • Laser cleaning equipment manufacturer LPC receives multiple orders

    Recently, laser cleaning equipment manufacturer Laser Photonics Corporation (LPC) has disclosed multiple orders in a row.On December 26th, LPC received an order from Walsh Service Solutions to purchase a handheld laser cleaning equipment. It is understood that the manufacturer is purchasing CleanTech IR-3040, a high-performance handheld fiber laser cleaning device designed by LPC, mainly used for ...

    2024-12-31
    See translation
  • Technology Frontiers | What is the Next Generation Laser?

    Since the 1960s, lasers have brought revolutionary changes to the world and have now become an indispensable tool in modern applications, from cutting-edge surgical procedures and precision manufacturing to fiber optic data transmission. However, with the increasing demand for laser applications, challenges have also arisen. For example, the market for fiber lasers is constantly expanding, mainly ...

    2024-06-21
    See translation
  • Aerotech's next-generation laser processing technology for medical device manufacturing

    Recently, Aerotech Inc., a global leader in precision motion control and automation, launched the ultimate cylindrical laser machining motion platform LaserTurn160. LaserTurn160 is designed for unparalleled precision and efficiency, with a 40% increase in production capacity compared to similar systems, setting a new standard for medical device manufacturing. Extremely high efficiency, unparalle...

    02-08
    See translation