English

Using a new type of ground laser to track space debris

628
2024-03-14 14:39:54
See translation

The Polish Space Research Center of the Celestial Geodynamics Observatory located in Borowitz near Poznan will enhance its capabilities with a new and powerful laser.

The first task of this state-of-the-art device is to enable researchers to accurately track the trajectories of 300 previously identified space debris in no less than six months.

Observatory Director Pawe ł  Lejba emphasized the importance of this upgrade, saying, "Thanks to funding from the Ministry of Science and Higher Education, we are able to purchase high-power, pulsed, and nanosecond Nd: YAG lasers along the integrated optical laser rangefinder system, which is being developed directly at our laser station, which is part of the Borowitz Celestial Geodynamic Observatory CBK PAN.".
Space debris, especially in low Earth orbit, has become an increasingly challenging issue. Approximately 30000 fragments larger than 10 centimeters were also discovered in the orbital belt less than 2000 kilometers from the Earth's surface.

They travel at a speed of about 7 kilometers per second, threatening major objects such as satellites and the International Space Station. The International Space Station orbits the Earth at an altitude of approximately 400 kilometers and flies around the Earth about 15 times a day.
The European Space Agency reported that in 2022 alone, 2409 payloads were sent into orbit. Most of them are small satellites designed to burn out when they re-enter the atmosphere in two years. With the continuous expansion of commercial space activities such as StarLink Internet satellite system, the number of man-made objects around the earth is growing rapidly.

In 2009, the Iridium 33 satellite collided with the Russian Cosmos 2251 satellite, marking the first such disaster in history, resulting in the complete destruction of both satellites and the production of over 700 pieces of debris.

In order to mitigate this risk, the Inter Agency Space Debris Coordination Committee was established in 1993. It issued guidelines stating that inactive satellites must be removed from orbit within 25 years after the completion of the mission. This directive aims to prevent the so-called Kessler syndrome, where the density of objects in space is so high that collisions between fragments will lead to a series of further collisions.

The new laser at Borowiec station is funded by a 2.3 million zloty grant, provided by Eurotek International headquartered in Warsaw, and is a key tool to address this challenge. It will be put into use in the second half of 2024 and will provide accurate information on the quantity and orbit of space debris to support efforts to clean up space. Its detection system allows for the reception of photons sent by lasers to objects located in Earth's orbit. When the beam of light reaches the tracked object, it bounces off the object and returns to the rangefinder, allowing for precise determination of the object's height and velocity relative to the Earth.

Since the 1980s, the Borowiec laser station has been a part of the Astro Geodynamic Observatory and a member of the International Laser Ranging Service. It conducts laser measurements of the distance to artificial satellites and space debris on Earth, making it a unique institution in Poland.
The observatory also has a time laboratory, one of the three stations of the country's most accurate atomic clock and the large international radio telescope LOFAR.

Source: Laser Net

Related Recommendations
  • Manufacturing customized micro lenses with optical smooth surfaces using fuzzy tomography technology

    Additive manufacturing, also known as 3D printing, has completely changed many industries with its speed, flexibility, and unparalleled design freedom. However, previous attempts to manufacture high-quality optical components using additive manufacturing methods often encountered a series of obstacles. Now, researchers from the National Research Council of Canada have turned to fuzzy tomography (a...

    2024-05-30
    See translation
  • E-22 uncertainty optical frequency divider

    The time/frequency unit is the most accurate among the seven basic units, so many measurement studies that pursue ultra-high accuracy and sensitivity will be transformed into frequency measurements to achieve higher measurement accuracy and sensitivity. For example, by measuring the relative changes in the ratio of different atomic transition frequencies, ultralight dark matter can be detected or ...

    2024-02-27
    See translation
  • BWT 969nm semiconductor pump source

    Semiconductor laser pump sources, especially those with a wavelength of 969nm, have become the preferred choice for high-power/high peak energy disc lasers due to their reduced quantum losses and heat generation.The 3000W 969nm fiber coupled semiconductor laser system launched by BWT uses 800 μ m NA0.22 fiber to output flat top optical energy distribution, combining lightweight and excellent optic...

    05-09
    See translation
  • IPG launches dual beam fiber laser for additive manufacturing applications

    Recently, American fiber laser giant IPG Photonics announced the launch of a new laser series specifically designed for the additive manufacturing field.The highlight of this series of lasers lies in its integration of IPG's unique dual beam technology, which can independently regulate and simultaneously emit core and ring beams, setting a new benchmark in accuracy, efficiency, and reliability.Ba...

    2024-11-25
    See translation
  • Overview of Residual Stress in Metal Additive Manufacturing: Detection Techniques, Numerical Simulation, and Mitigation Strategies

    Researchers from Shantou University have reported a review of residual stresses in metal additive manufacturing: detection techniques, numerical simulations, and mitigation strategies. The relevant paper titled "A comprehensive review of residual stress in metal additive manufacturing: detection techniques, numerical simulations, and mitigation strategies" was published in the Journal of the Brazi...

    2024-12-20
    See translation