English

Ultra fast plasma for all optical switches and pulse lasers

1142
2024-03-26 14:19:24
See translation

Plasmology plays a crucial role in advancing nanophotonics, as plasma structures exhibit a wide range of physical properties that benefit from local and enhanced light matter interactions. These characteristics are utilized in many applications, such as surface enhanced Raman scattering spectroscopy, sensors, and nanolasers.

In addition to these applications, the ultrafast optical response of plasma is also a key characteristic that has been used to achieve optical signal switching across different spectral bands, which is crucial for advanced optical logic circuits and telecommunications systems.
Recently, optical switches have become an important component of the development of all optical computing and signal processing, among which these optical switch devices require enhanced response speed, modulation depth, and wide spectral tunability.

The latest developments in the manufacturing and characterization of plasma nanostructures have stimulated the search for sustained effects in their potential applications in the field of photonics. Professor Liu and his team focus on the role of plasma in photonics, introducing the latest developments in ultrafast plasma materials, with a focus on all optical switches.

By elaborating on the ultrafast process revealed by experimental and theoretical methods, the basic phenomena of plasma light matter interaction and plasma dynamics were discussed, and the use of ultrafast plasma for all optical switching and pulse laser generation was comprehensively explained, with a focus on device design and performance.

Here, they introduce the light matter interactions related to the ultrafast plasma response observed in different plasma materials and structures in the first part, and then explain the theoretical and experimental methods developed to study the ultrafast mechanisms in plasmons.

In the following chapters of this article, they discuss and summarize ultrafast plasma optical switching systems based on the classification of plasma metasurfaces such as precious metals, phase change hybrid materials, conductive oxides, and waveguides. These ultrafast plasma metasurfaces are further divided by spectral bands in the visible and near-infrared ranges. The last section discusses the use of plasma ultrafast optical switches to generate ultrafast pulse lasers.

Ultra fast plasma has been widely used in an increasing number of photonics applications. This review article will serve as a reference for researchers to explore new processes in photonics by combining plasma.
The research results are published in the journal Ultrafast Science.

Source: Laser Net

Related Recommendations
  • Scientists at St. Andrews University have made significant breakthroughs in compact laser research

    Scientists at St. Andrews University have made significant breakthroughs in compact laser research after decades of hard work.Laser is widely used in fields such as communication, medicine, measurement, manufacturing, and measurement around the world. They are used to transmit information on the internet, for medical purposes, and even in facial scanners on mobile phones. Most of these lasers are...

    2023-10-04
    See translation
  • Progress has been made in the development of anti resonant hollow core fiber Raman probes with low background noise at Shanghai Optics and Machinery Institute

    Recently, the research team of the Special Glass and Fiber Research Center of the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, aimed at the demand for in-situ detection of Raman signals, expanded the functions of the laboratory commercial Renishaw Invia confocal micro Raman spectrometer by usi...

    2024-05-22
    See translation
  • Research Progress: Extreme Ultraviolet Photolithography

    Recently, the semiconductor industry has adopted Extreme Ultraviolet Lithography (EUVL) technology. This cutting-edge photolithography technology is used for the continuous miniaturization of semiconductor devices to comply with Moore's Law. Extreme ultraviolet lithography (EUVL) has become a key technology that utilizes shorter wavelengths to achieve nanoscale feature sizes with higher accuracy a...

    2024-12-09
    See translation
  • Unsupervised physical neural network empowers stacked imaging denoising algorithm

    In view of the reconstruction problem of stack imaging technology in noisy environment, Lin Nan's team from Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, proposed an innovative method ProPtyNet based on unsupervised physical neural network, which is expected to be applied to chip CD measurement and defect detection. The article was published in Optics and lasers in engin...

    03-25
    See translation
  • NUBURU Announces Second Next Generation Blue Laser Space Technology Contract with NASA

    NUBURU, the leading innovator of high-power and high brightness industrial blue laser technology, announced today that it has been awarded a second phase contract worth $850000 by the National Aeronautics and Space Administration (NASA) to advance blue laser power transmission technology as a unique solution that significantly reduces the size and weight of equipment required for lunar and Martian...

    2024-05-13
    See translation