English

Ultra fast plasma for all optical switches and pulse lasers

940
2024-03-26 14:19:24
See translation

Plasmology plays a crucial role in advancing nanophotonics, as plasma structures exhibit a wide range of physical properties that benefit from local and enhanced light matter interactions. These characteristics are utilized in many applications, such as surface enhanced Raman scattering spectroscopy, sensors, and nanolasers.

In addition to these applications, the ultrafast optical response of plasma is also a key characteristic that has been used to achieve optical signal switching across different spectral bands, which is crucial for advanced optical logic circuits and telecommunications systems.
Recently, optical switches have become an important component of the development of all optical computing and signal processing, among which these optical switch devices require enhanced response speed, modulation depth, and wide spectral tunability.

The latest developments in the manufacturing and characterization of plasma nanostructures have stimulated the search for sustained effects in their potential applications in the field of photonics. Professor Liu and his team focus on the role of plasma in photonics, introducing the latest developments in ultrafast plasma materials, with a focus on all optical switches.

By elaborating on the ultrafast process revealed by experimental and theoretical methods, the basic phenomena of plasma light matter interaction and plasma dynamics were discussed, and the use of ultrafast plasma for all optical switching and pulse laser generation was comprehensively explained, with a focus on device design and performance.

Here, they introduce the light matter interactions related to the ultrafast plasma response observed in different plasma materials and structures in the first part, and then explain the theoretical and experimental methods developed to study the ultrafast mechanisms in plasmons.

In the following chapters of this article, they discuss and summarize ultrafast plasma optical switching systems based on the classification of plasma metasurfaces such as precious metals, phase change hybrid materials, conductive oxides, and waveguides. These ultrafast plasma metasurfaces are further divided by spectral bands in the visible and near-infrared ranges. The last section discusses the use of plasma ultrafast optical switches to generate ultrafast pulse lasers.

Ultra fast plasma has been widely used in an increasing number of photonics applications. This review article will serve as a reference for researchers to explore new processes in photonics by combining plasma.
The research results are published in the journal Ultrafast Science.

Source: Laser Net

Related Recommendations
  • Developing a concentration independent pressure sensing method for high-temperature combustion diagnosis

    Recently, a research group led by Professor Gao Xiaoming and Professor Liu Kun of the Chinese Academy of Sciences Hefei Institute of Physical Sciences developed a concentration independent pressure sensing method based on two-color laser absorption spectrum for high-temperature combustion diagnosis.The research findings are published in Optics Letters.Aircraft engines are developing towards high-t...

    2024-03-08
    See translation
  • Progress in Theoretical Research on the Mechanism of Liquid Terahertz Wave Generation by Precision Measurement Institute

    Terahertz waves have significant application value in communication and imaging. The nonlinear interaction between strong field ultrafast laser and matter is one of the important ways to generate terahertz waves. The experimental and theoretical research related to terahertz generation media such as plasma, gas, and crystal is relatively sufficient. However, liquid water is a strong absorbing medi...

    2024-03-22
    See translation
  • Stable lasers developed with mixed materials focus on autonomous vehicle, etc

    Researchers printed microscale lenses directly onto optical fibers, allowing them to tightly combine the fibers and laser crystals into a single laser oscillator.Scientists have used 3D printing polymers in new micro optical technology, which can reduce the size of lasers and be used in various new applications, including the laser radar system for autonomous vehicle technology and cancer treatmen...

    2024-01-22
    See translation
  • Historic Moment! The 100th TruLaser Cell Series 3D Five-Axis Laser Cutting Machine Successfully Rolls Off the Production Line in China

    Driven by the global trend of lightweighting in new energy vehicles (NEVs), TRUMPF has reached a significant milestone in Taicang, Jiangsu—the successful rollout of the 100th TruLaser Cell series 3D five-axis laser cutting machine. This achievement is more than just a numerical breakthrough; it symbolizes the deep integration of German technology with Chinese manufacturing and underscores TRUMPF's...

    03-14
    See translation
  • Laser engraving: Researchers have created a revolutionary technology

    Recently, a group of researchers from the University of Cambridge developed an innovative method of using high-energy lasers to improve 3D printing of metals. This discovery has the potential to change the way we design and manufacture complex metal objects.3D printing has completely changed the landscape of the manufacturing industry. However, it faces obstacles, especially in terms of the charac...

    2023-11-24
    See translation