English

Research has shown that patterns on crystals can double the optical sensitivity of photodetectors

75
2024-04-01 14:30:57
See translation

Scientists from the Institute of Automation and Control Process at the Far East Branch of the Russian Academy of Sciences described the changes on the surface of monocrystalline silicon during laser processing. The author of this study placed the crystal in a methanol solution and applied a laser pulse lasting one thousandth of a second to the sample, with a pulse count ranging from five to fifty per square micrometer of surface.

Experiments have shown that under a small amount of pulse, three-dimensional nanostructures appear on the crystal surface, forming parallel convex stripe patterns. When 25-30 laser pulses are applied to silicon per square micrometer, the stripe pattern becomes a maze composed of irregularly shaped protrusions. Scientists believe that this effect is due to the heating and partial melting of materials under intensive laser processing, resulting in changes in surface structure.

"We have slightly changed the laser processing technology accepted by the scientific community: when the material is not in an air environment but in a liquid environment, that is, in methanol, we have achieved this. This makes it possible to prevent silicon oxidation, prevent any debris from entering the material surface, and form regular and dense nanostructures," said Sergei Shubayev, a junior researcher at the FAB RAS Institute for Automation and Control Processes, quoted by the Russian Science Foundation.

The author also discovered how the patterns on the crystal surface change according to the polarization of the laser beam, which reflects the direction of the electric and magnetic field vectors of light waves in space. For example, if the oscillation of the electric field vector occurs on a single plane, the laser can form parallel lines and spherical structures on the surface. When the electric field vector rotates in a plane perpendicular to the direction of light propagation, only spherical convex surfaces are formed on the crystal surface. Finally, when polarization changes, the oscillation of the electric field vector becomes perpendicular to the axis of the beam, and the laser beam takes on a donut shape: when it shines on the surface, nanostructures resembling wheat spikes appear.

The researchers evaluated the ability of the obtained samples to absorb light. They found that all patterns reflected light and lost no more than 5% of the light. In order to demonstrate in practice that laser processing makes monocrystalline silicon more sensitive to light than the original sample, the author designed a photodetector based on the material. The sensitivity of this device to infrared radiation is twice that of detectors using traditional silicon crystals.

Source: Laser Net

Related Recommendations
  • Shanghai Microsystems Institute has developed a high-speed photon detector with distinguishable photon numbers

    Recently, Li Hao and You Lixing's team from the Chinese Academy of Sciences Shanghai Institute of Microsystems and Information Technology developed an ultrahigh speed, photon number resolvable optical quantum detector with a maximum count rate of 5GHz and a photon number resolution of 61 by using the sandwich structure superconducting nanowires and multi wires working in parallel. The related rese...

    2024-07-12
    See translation
  • Stuttgart University researchers develop a new high-power 3D printed micro optical device for compact lasers

    Researchers from the Fourth Institute of Physics at the University of Stuttgart have demonstrated the feasibility of 3D printed polymer based micro optical devices in harsh laser environments.This study was detailed in the Journal of Optics, outlining the use of 3D printing technology to directly manufacture microscale optical devices on fibers, seamlessly integrating fibers and laser crystals int...

    2024-01-09
    See translation
  • Lumibird signs a 20 million euro contract to provide laser rangefinders for airborne defense applications

    Recently, European laser technology leader Lumibird announced the signing of a major contract to provide laser rangefinders for airborne defense applications.The contract is worth approximately 20 million euros, adding to Lumibird's existing business in laser rangefinders. It covers the supply of over 100 laser rangefinders over a three-year period starting from the third quarter of 2024, as well ...

    2023-10-01
    See translation
  • Targeting military laser technology! Two major enterprises plan to establish a joint venture company

    Latest news: Rheinmetall and European Missile Group Germany plan to establish a joint venture to develop shipborne laser weapons.The cooperation between the two companies in the field of military laser technology has been ongoing for several years. In 2022 and 2023, under the framework of the High Energy Marine Laser Demonstration Working Group (ARGE), the jointly developed laser was successfully ...

    01-15
    See translation
  • Van's updates the manufacturer of laser-cut parts

    Van's Aircraft has responded to reports of ruptured dented parts found in AirVenture's latest kit. These defects are caused by external suppliers changing the process of laser cutting parts. From February 2022 to June 2023, Van's moved some parts from traditional punch manufacturing to an outside supplier that can laser cut rivet holes. The move is designed to increase the company's throughput and...

    2023-08-04
    See translation