English

MIT research enables 3D printers to recognize new materials

1086
2024-04-18 16:54:09
See translation

According to scientists at MIT, mathematical formulas developed by MIT researchers and other institutions can significantly improve the sustainability of 3D printing.

Issues with 3D printing of plastics
3D printers typically use mass-produced polymer powders to print parts, which are consistent and predictable, but also difficult to recycle.
Other more environmentally friendly options also exist and are still under development, but changing the printing material also requires adjusting the parameters of the 3D printer, which is a challenging process that requires changing up to 100 features, and most of them are done manually.

"Mathematical functions" for new parameters
A research team from the MIT Bits and Atoms Center, the National Institute of Standards and Technology, and the National Center for Scientific Research in Greece has developed a process that actually allows printing software to quickly identify the characteristics of new printing materials. It may have never been encountered before and many related parameters have been adjusted accordingly.

Researchers have improved the extruder of a 3D printer to measure material flow and force within 20 minutes, and then input these numbers into its "mathematical function" to generate new parameters that can be implemented in standard printing software.

The Success of Biobased Materials
Officials from the Massachusetts Institute of Technology say that this technology accounts for about half of the parameters that typically require human modification. Experiments on new materials (including materials from biological sources) have shown that this process can even successfully manufacture complex parts.

Reduce the impact of 3D printing on the environment
This method can achieve more recyclable printed products and limit the use of polymers from fossil fuels, ultimately reducing the overall environmental impact of additive manufacturing.

Source: Laser Net

Related Recommendations
  • Successful First Satellite Earth Laser High Speed Image Transmission Experiment

    Recently, the reporter learned from Changguang Satellite Technology Co., Ltd. (hereinafter referred to as "Changguang Satellite") that the company used a self-developed vehicle mounted laser communication ground station to conduct satellite ground laser high-speed image transmission experiments with the onboard laser communication terminal of the "Jilin No.1" constellation MF02A04 satellite and ac...

    2023-10-14
    See translation
  • New discoveries bring progress in photon calculation

    International researchers led by Philip Walther from the University of Vienna have made significant breakthroughs in the field of quantum technology, successfully demonstrating quantum interference between multiple single photons using a new resource-saving platform. This work, published in Science Advances, represents a significant advancement in the field of quantum computing and paves the way f...

    2024-04-27
    See translation
  • The Influence of Laser Beam Intensity Distribution on Lock Hole Geometry and Process Stability under Green Laser Radiation

    Researchers from the University of Aveiro in Portugal and the School of Engineering at Porto Institute of Technology (ISEP) in Portugal reported a study on the influence of laser beam intensity distribution on the geometric shape and process stability of lock holes under green laser radiation. The relevant paper titled "Influence of Laser Beam Intensity Distribution on Keyhole Geometry and Process...

    03-26
    See translation
  • Researchers propose NeuFlow: an efficient optical flow architecture that can solve high-precision and computational cost issues

    Real time and high-precision optical flow estimation is crucial for analyzing dynamic scenes in computer vision. Although traditional methods are fundamental, they often encounter issues with computation and accuracy, especially when executed on edge devices. The emergence of deep learning has driven the development of this field, providing higher accuracy, but at the cost of sacrificing computati...

    2024-03-23
    See translation
  • Research on High Strength and High Toughness TC11 Titanium Alloy with Multi Laser Coaxial Wire Feeding and Directed Energy Deposition

    Researchers from Huazhong University of Science and Technology, AVIC Xi'an Aircraft Design and Research Institute, AVIC Xi'an Aircraft Industry Group Co., Ltd., Shanghai Aerospace Equipment Manufacturing General Factory Co., Ltd., State Key Laboratory of Aircraft Control Integration Technology, Beijing Xinghang Electromechanical Equipment Co., Ltd. and Nanjing Yingigma Automation Co., Ltd. reporte...

    05-14
    See translation