English

The birth of multi photon 3D laser printing technology: printing millions of particles within 1 second

1279
2024-04-19 15:51:06
See translation

Multi photon 3D laser printing technology, as a disruptive micro manufacturing technology, is facing two major challenges: speed and material compatibility. However, the latest research has made breakthrough progress, successfully increasing printing speed tenfold while maintaining excellent detail accuracy.

In this remarkable study, scientists abandoned the traditional single beam printing method and instead adopted an innovative strategy of multiple focused beams working in parallel. This transformation greatly improves the production efficiency of voxels, making it possible to complete millions of micro fine component printing in just a few minutes.

From complex medical devices to micro customized drug delivery drones, these futuristic application scenarios are gradually becoming a reality.
To achieve this leap, researchers have carefully designed customized optical components to ensure optimal focusing and power transmission of multiple laser beams. The birth of this high-precision system not only significantly improves printing speed, but also expands the range of materials that can be processed, opening up broad prospects for various application fields.

This innovative research was published in the journal Light: Advanced Manufacturing and demonstrated its strong capabilities through two eye-catching demonstrations. Firstly, researchers have successfully printed millions of custom designed particles, laying a solid foundation for personalized healthcare and revolutionary drug delivery solutions. Secondly, they have created a massive and complex metamaterial containing over 1.7 trillion voxels, setting a new record in the field of microprinting.

It is worth mentioning that the popularization and widespread application of this technology also demonstrate enormous potential. Researchers have used commercial laser printers to manufacture key optical components, which further reduces costs and improves the affordability and accessibility of technology.

Looking ahead to the future, multi photon 3D laser printing technology will lead the field of micro manufacturing into a new stage of development. From complex micro machines to personalized medical implants, and then to breakthrough new materials, this technology will create a future world full of infinite possibilities for humanity. With the continuous breakthroughs in speed and accuracy limits, researchers are laying a solid foundation for future miniaturization printing technology.

Source: OFweek

Related Recommendations
  • Entangled photon pairs generated by quantum light sources can be used for quantum computing and cryptography

    A new device composed of semiconductor rings generates pairs of entangled photons, which can be used in photon quantum processors.Quantum light sources generate entangled photon pairs, which can be used in quantum computing and cryptography. A new experiment has demonstrated a quantum light source made from semiconductor gallium nitride. This material provides a multifunctional platform for devic...

    2024-03-30
    See translation
  • Toshiba has developed the world's highest precision 99.9% LiDAR technology

    Recently, Toshiba announced that in the field of LiDAR lidar for distance measurement, it has developed a technology that can track vehicles, people, and other objects with 99.9% accuracy, achieving the world's highest accuracy. And only using LiDAR to collect data can achieve 98.9% object recognition.In addition, the detection distance in rainstorm and dense fog environments has been increased by...

    2023-10-06
    See translation
  • Research Progress: Extreme Ultraviolet Photolithography

    Recently, the semiconductor industry has adopted Extreme Ultraviolet Lithography (EUVL) technology. This cutting-edge photolithography technology is used for the continuous miniaturization of semiconductor devices to comply with Moore's Law. Extreme ultraviolet lithography (EUVL) has become a key technology that utilizes shorter wavelengths to achieve nanoscale feature sizes with higher accuracy a...

    2024-12-09
    See translation
  • Michigan State University uses laser pulses to impact gold nanoparticles for crystal growth

    To make crystals suitable for use as optoelectronic materials, the key is to precisely control the crystallization, but this control is difficult.Producing lead halide perovskites, promising components for next-generation solar cells and photodetectors, has proven particularly challenging, with slow growth rates and uncontrolled nucleation being common issues.A project at Michigan State University...

    10-16
    See translation
  • Acta: Revealing the mechanism of defect formation in additive manufacturing

    Main author: Yanming Zhang, Wentao Yana*The first unit: National University of SingaporePublished Journal: Acta MaterialiaResearch backgroundIndustry pain point: Although laser powder bed melting (LPBF) technology can manufacture complex components, the lack of consistent product quality is still the core bottleneck restricting its industrial application. Research has shown that up to 35% of proce...

    02-21
    See translation