English

Trumpf collaborates with Mercedes Benz to focus on digital real-time laser maintenance

6
2024-06-17 15:40:54
See translation

In the era of smart factories, Mercedes Benz monitors all fast lasers in its global production network based on cloud, significantly improving system resilience and reducing the risk of machine downtime.

 



The connection between the Mercedes Benz digital ecosystem MO360 and the Trumpf laser for digital prediction services has helped achieve very good dynamic maintenance, and achieved demand based on-site service allocation while optimizing service costs.

Recently, Trumpf announced a partnership with automotive giant Mercedes Benz, deepening decades of cooperation and jointly promoting the revitalization of complex production systems. This not only improves production efficiency but also enhances system flexibility.

In the era of smart factories, both companies focus on predictive digital maintenance and real-time laser maintenance. The corresponding pilot project of the Sindelfingen factory has become a blueprint model for all Mercedes Benz factories worldwide. This innovative process significantly reduces the risk of unexpected machine shutdowns and greatly improves the flexibility of complex automotive production processes.

Standardized data infrastructure, predictive digital maintenance
Traditional laser maintenance relies on fixed time intervals and repairs are carried out directly at their respective locations. Master data maintenance, documentation, and data exchange all require manual completion.

However, with the cooperation between Trumpf and Mercedes Benz, this situation has been completely changed.
With the support of Manufacturing Service Bus (MSB) and global MO360 data infrastructure, about half of the fast lasers and related laser optical devices have been connected to a common cloud, enabling real-time data exchange and analysis.

J, member of the Management Committee of Mercedes Benz AG? "The future of automotive production lies in forward-looking digital processes, dynamic maintenance, and minimizing failures. Our collaboration with Trumpf enables us to continuously drive the optimization of production processes through innovative status monitoring," said rg Burzer.

Status monitoring: Real time monitoring of production systems
In the digital service status monitoring system developed by Trumpf, the status of the laser can be continuously monitored and analyzed in real-time based on the cloud. Any abnormalities can be quickly identified and reported directly to the maintenance department, while providing recommended handling measures. This enables Mercedes Benz to anticipate maintenance needs before laser malfunctions occur, and take timely measures to prevent them from occurring.

More than 80% of service cases have achieved prediction and proactive planning, greatly reducing unexpected downtime in production. In addition, the results of these analyses will help Mercedes Benz operate lasers better, thereby contributing to the continuous optimization of its high-tech car production.

Hagen Zimer, CEO of Trumpf Laser Technology, also emphasized the importance of intelligent factory solutions: "Digital networks are key to improving production efficiency. Through status monitoring and data analysis, we support Mercedes Benz in achieving state-of-the-art production while increasing the availability of our lasers and machines."

Mercedes Benz guarantees data protection
In terms of data protection, Mercedes Benz adopts a globally unified IT architecture and standardized components to ensure that production related data is not leaked to third parties. Only laser status data will be sent to Trumpf Cloud for analysis, and the data flow is subject to strict cloud evaluation and audit protection.

Status monitoring: In the era of smart factories, Mercedes Benz and TRUMPF high-tech companies rely on real-time laser prediction and forward-looking digital maintenance of all TRUMPF lasers in the global automotive production network.

Cooperation between Trumpf and Mercedes Benz
Hagen Zimer, CEO of Trumpf Laser Technology, and J, Board Member of Mercedes Benz? RG Burzer is located at the S-class sedan production plant in Sindfingen.

In addition, Mercedes Benz also collaborates with the German Institute of Advanced Technology to jointly develop the Trumpf Intelligent Factory Technical College, committed to cultivating more professional talents with advanced production technology. This cooperation not only promotes technological progress, but also lays a solid foundation for the future development of Mercedes Benz and Trumpf.

Source: OFweek

Related Recommendations
  • New type of metasurface with adjustable beam frequency and direction

    Recently, according to the journal Nature Nanotechnology, a team from the California Institute of Technology reported that they have constructed a metasurface covered with micro adjustable antennas that can reflect incident light beams: one beam of light enters and multiple beams of light exit, each with a different frequency and propagating in a different direction. This is a new method for proce...

    07-30
    See translation
  • Launching the world's strongest laser at a cost of 320 million euros

    Beijing, April 1st (Reporter Liu Xia) - The world's most powerful laser has been activated recently. On March 31st, the Physicist Organization Network reported that the system can enable laser pulses to reach a peak of 10 terawatts (1 terawatt=100 terawatts=1015 watts) within 1 femtosecond (1000 trillions of a second), which is expected to promote revolutionary progress in multiple fi...

    04-03
    See translation
  • Patterned waveguide enhanced signal amplification within perovskite nanosheets

    Researchers at Busan National University, led by Kwangseuk Kyhm, Professor of Ultra Fast Quantum Optoelectronics from the Department of Optics and Mechatronics, are enhancing signal amplification inside cesium bromide lead perovskite nanosheets through patterned waveguides.Perovskite is a highly attractive material in solar cell applications, but its nanostructure is now being explored as a new la...

    01-10
    See translation
  • Tiedra Famaceutica uses Macsa ID's SPA2 CB laser marking system

    Tiedra Famaceutica was founded by members of the Tiedra family in 2003 and is a manufacturer of contact lenses, health and ophthalmic products, as well as diagnostic instruments used in optometry and ophthalmic clinics.Before installing the SPA2 CB laser model for Macsa id, Tiedra used a pantograph, which is a quadrilateral system composed of hinged rods. This manual process provides limited marki...

    2023-12-14
    See translation
  • Optical properties of Xinggory Cy3.5 amine/NH2 labeling experiment

    The optical properties of the Cy3.5 amine labeling experiment are an important reason for its application in biomarkers and fluorescence imaging. Cy3.5 is a fluorescent dye belonging to the Cyanine dye family, with high molar extinction coefficient and quantum yield, making it excellent in trace analysis and fluorescence imaging.In the Cy3.5 amine labeling experiment, the dye covalently binds to s...

    03-29
    See translation