English

Progress made by the Precision Measurement Institute in Thorium Ion Trapping Research

1133
2024-06-21 14:25:12
See translation

Recently, the Cold Molecular Ion Research Group of the Institute of Precision Measurement has made significant progress in the loading, trapping, and recognition of thorium ions. The related research results have been published as cover and selected articles in the international physics journal Journal of Applied Physics, titled "Loading and identifying variable charged thorium ions in a linear ion trap with a time of flight mass spectrometer".

In recent years, the measurement of the first excited state energy of thorium-229 atomic nuclei has become a frontier and hotspot in precision measurement physics research. The energy of the first excited state of thorium-229 atomic nucleus is only about 8.3 eV higher than that of the ground state, and the corresponding radiation transition line width is about 10-4? Hz。 At present, thorium-229 is the only nuclide confirmed to be capable of using laser to regulate nuclear energy levels and achieve nuclear clocks.

The research team successfully trapped and accumulated thorium ions in an ion trap using a dynamic loading combined with buffer gas collision cooling method [2]. Meanwhile, the self-developed ion trap time-of-flight mass spectrometry combined system was used to analyze the quantity, velocity distribution, and trapping lifetime of thorium ions. The relevant achievements have laid the technical foundation for further exciting thorium-229 nuclear transitions through electron bridge processes [3].

PhD students Li Lin and Li Zi from the Institute of Precision Measurement are the co first authors of this article, Associate Researcher Hua Xia is the co author, and Researcher Tong Xin is the corresponding author.

This work has been supported by the National Natural Science Foundation of China and the National Key Research and Development Program.

[1] Zi Li,Lin Li,Xia Hua,and Xin Tong,Loading and identifying various charged thorium ions in a linear ion trap with a time-of-flight mass spectrometer,J. Appl. Phys. 135,144402 (2024).

[2] Lin Li,Zi Li,Xia Hua,and Xin Tong,Dynamic laser ablation loading of a linear Paul trap,arXiv:2402.17981,J. Phys. D accepted (2024).

[3] Lin Li,Zi Li,Chen Wang,Wen-Ting Gan,Xia Hua,and Xin Tong,Scheme for the excitation of thorium-229 nuclei based on electronic bridge excitation,Nucl. Sci. Tech. 34,24 (2023).

Cover and Selected Articles of the International Journal of Applied Physics

Source: Institute of Precision Measurement Science and Technology Innovation, Chinese Academy of Sciences

Related Recommendations
  • Eoptolink launches optical transceivers for immersion cooling

    Eoptolink Technology has expanded its product portfolio to meet the new market of optical transceiver modules operating in environments using immersion cooling.The Eoptolink EOLO-138HG-5H-SYMR is an optical transceiver for the 800G OSFP DR8, which can be completely immersed in a 2-phase liquid cooling environment. The EOLO-138HG-02-SYMR is an 800G OSFP DR8+. This transceiver has fiber optic tail f...

    2024-03-26
    See translation
  • The 2023 International Quantum Photonics Conference attracted over 600 attendees from 16 countries and regions

    On November 25th, Jinhua welcomed the 2023 International Quantum Photon Conference, which will lead the future of technology. This grand event is jointly hosted by the Chinese Society of Optical Engineering and the Jinhua Municipal Government, with joint support from the University of Science and Technology of China, Zhejiang Normal University, and the PhotoniX journal. The conference, with the th...

    2023-11-27
    See translation
  • A new type of all-optical intelligent spectrometer

    Recently, Professor Xu Tingfa's research team from the School of Optoelectronics at Beijing Institute of Technology and Assistant Professor Lin Xing's team from Tsinghua University jointly developed a new type of Opto Intelligence Spectrometer (OIS). The device is based on diffractive neural network technology and achieves precise spectral reconstruction under spatially coherent or spatially incoh...

    2024-07-22
    See translation
  • Harvard University and University of Vienna invented tunable laser chips

    Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and Vienna University of Technology (TU Wien) have invented a new type of tunable semiconductor laser that shows smooth, reliable, wide-range wavelength tuning in a simple, chip-sized design.Tunable lasers are integral to many technologies, from high-speed telecommunications to medical diagnostics to safet...

    07-16
    See translation
  • Polish and Taiwan, China scientists are committed to new 3D printing dental implants

    Researchers from Wroclaw University of Technology and Taipei University of Technology in China are developing dental implants made from 3D printed ceramic structures connected to metal cores. Due to the use of biodegradable magnesium, bone tissue will gradually grow into such implants."The result will be a composite implant that can replace human teeth. Its scaffold is made of aluminum oxide...

    2024-04-17
    See translation