English

Dr. Mark Sobey, President of Coherent Lasers, has officially retired

1154
2023-09-05 14:10:27
See translation

On September 1 local time, Coherent, an American laser system solutions provider, announced that Dr. Mark Sobey, president of its laser division, has officially retired from the company.

In July 2022, II-VI and Coherent completed the merger and were reorganized into three business units: Lasers, Materials and Networking. Since this point, Dr. Sobey has served as President of Coherent's Laser division.

Prior to the merger, Dr. Sobey served as Coherent's Chief Operating Officer from 2020 to 2022. Prior to his promotion to Chief Operating Officer, he served as Executive Vice President and general Manager of Coherent's OEM Laser Sources division. Prior to that, he served as Executive Vice President and General Manager of Specialty Laser Systems (SLS) from 2010 to 2016 and Vice President and General Manager of SLS from 2007 to 2010.

Commenting on Dr. Mark Sobey's retirement, Coherent's Chairman and Chief Executive Officer, Dr. Vincent D. Mattera, said: "Dr. Sobey has a long track record of success at the former Coherent, and with his outstanding expertise in laser and fiber technology, he has provided invaluable leadership to our combined company over the past 14 months."

He added, "Dr. Sobey's scientific and technical prowess is a great asset to Coherent, and I will personally miss him as a colleague on our executive leadership team. We thank him for his significant contributions and wish him and his family all the best in his retirement."

Prior to joining Coherent, Dr. Sobey spent more than 20 years in the laser and fiber communications industry, including serving as Senior Vice President of Product Management at Cymer and Vice President of Global Sales at JDS Uniphase. He holds a Ph.D. in engineering and a B.S. in Physics from the University of Strathclyde in Scotland.

Source: OFweek

Related Recommendations
  • Japan and Germany jointly develop ultra high speed laser material deposition technology

    Makino Machine Tool Company, headquartered in Tokyo, Japan, and Fraunhofer Institute for Laser Technology (ILT), headquartered in Aachen, Germany, have collaborated to combine ultra-high speed laser material deposition (EHLA) and near net shape additive manufacturing (EHLA3D) with a five axis CNC platform. The new system developed can efficiently produce, coat, or repair complex geometric shapes o...

    2024-10-25
    See translation
  • Artificial intelligence accelerates the process design of 3D printing of metal alloys

    In order to successfully 3D print metal parts to meet the strict specifications required by many industries, it is necessary to optimize process parameters, including printing speed, laser power, and layer thickness of deposited materials.However, in order to develop additive manufacturing process diagrams that ensure these optimal results, researchers have to rely on traditional methods, such as ...

    2024-02-27
    See translation
  • A Large Angle Color Holographic 3D Display System Based on Color LCD Grating

    Holographic display technology provides the ultimate solution for true 3D display, with enormous potential in augmented reality and virtual reality. However, the color and viewing angle of holographic 3D displays mainly depend on the wavelength of the laser and the pixel size of the current spatial light modulator. The inevitable color difference and narrow viewing angle in conventional systems se...

    2024-01-24
    See translation
  • Cambridge University researchers use lasers to "heat and strike" 3D printed steel

    According to the University of Cambridge, researchers have developed a new method for 3D printing metal, which can help reduce costs and more effectively utilize resources. This method, developed by a research team led by the University of Cambridge, allows structural modifications to be "programmed" into metal alloys during 3D printing - fine-tuning their performance without the need for thousand...

    2023-11-03
    See translation
  • Innovating Photonics: Lithium Tantalate Provides Power for the Next Generation of Optoelectronic Circuits

    The new photonic integrated circuit technology based on lithium tantalate has improved cost efficiency and scalability, making significant progress in the fields of optical communication and computing.The rapid development of photonic integrated circuits (PICs) has revolutionized optical communication and computing systems, combining multiple optical devices and functions on a single chip.For deca...

    2024-05-14
    See translation