English

Comparison of Blue and Infrared Wavelength in Pure Nickel Laser Deep Fusion Welding Process

41
2024-08-13 14:40:01
See translation

It is reported that researchers from BIAS Bremer Institution f ü r angewandte Strahltechnik GmbH in Germany have reported a comparative study of laser deep penetration welding processes for pure nickel using blue and infrared light wavelengths. The related research was published in Welding in the World under the title "Process comparison of laser deep penetration welding in pure nickel using blue and infrared wavelengths".

Compared with infrared laser radiation, the Fresnel absorption rate in the visible blue spectral range is significantly increased, making it suitable for thermal conduction mode welding of materials such as copper and nickel. Recently, a blue laser source with a wavelength of 445 nm has emerged, whose power and beam parameters are sufficient to exceed the intensity threshold of laser deep penetration welding. Compared with heat conduction mode welding, in laser beam deep penetration welding, the total absorption is significantly increased due to multiple reflections inside the lock hole. However, since the absorbed energy per reflection inside the lock hole is wavelength dependent, it can be assumed that the selection of laser wavelength will cause changes in the local energy distribution inside the lock hole, thereby altering its dynamics. To investigate this issue, researchers conducted laser beam deep penetration welding experiments on 2.4068 pure nickel using infrared laser sources and blue laser sources with comparable beam characteristics. The experiment was monitored and compared through multi-sensor devices and metallographic analysis. The use of a blue laser beam can reduce sputtering volume, increase porosity, and significantly alter acoustic emission, thus proving the hypothesis for pure nickel.

Figure 1: The measured caustics and one-dimensional and two-dimensional intensity curves on the focal plane of the laser beam used.


Figure 2: Sample size and design (the sample needs to be replaced after each welding to allow the sample temperature to drop to room temperature before the next welding)


Figure 3: Left: Experimental schematic diagram; Right: Image of experimental setup


Figure 4: Left: High speed video raw frames used for splash detection; Center: identified areas of interest; Right: Detected splashes


Figure 5: Left: High speed video raw frame used for measuring lock hole area; Left second: Detected lock hole area; Right two: measured lock hole area; Right: Definition of Lock Hole Area Radius Deviation

Research has shown that the comparison of carbon dioxide laser sources and solid-state laser sources with different wavelengths has a significant impact on keyhole dynamics, but this cannot be entirely attributed to changes in the Fresnel absorption coefficient caused by plasma absorption. In order to further clarify the relevant effects, this study aims to separate the effects of plasma absorption and Fresnel absorption coefficient changes on keyhole dynamics by using lasers of different wavelengths. The hypothesis studied by researchers is that in nickel laser beam deep penetration welding, the laser wavelength changes from 1030 nm to 445 nm, and the Fresnel absorption coefficient increases accordingly. This will cause changes in the local energy distribution inside the lock hole, thereby altering the dynamics of the lock hole, including the wave motion of the lock hole opening, the formation of splashes, acoustic emission, and the resulting porosity. To verify this hypothesis, experimental monitoring and comparison were conducted on nickel plates using lasers of the two wavelengths mentioned above. In this study, nickel was found to be more suitable than copper because the Fresnel absorption coefficient significantly increased from infrared to blue wavelengths. However, compared to copper laser beam welding, which can only observe unstable processes, researchers have developed a constant deep penetration welding process. This makes the welding process more comparable.

Figure 6: Average weld depth (upper figure) and average weld width (middle figure) as a function of laser power and wavelength; Characteristic metallographic cross-section (as shown in the figure below)


Figure 7: Etching the longitudinal section of the gold phase, with a significant increase in welding depth


Figure 8: Spectral Reference

This study conducted laser beam deep penetration welding experiments on 2.4068 pure nickel using an infrared laser beam source with a wavelength of 1030nm and a blue laser beam source with a wavelength of 445nm. The beam characteristics of these two laser beams were comparable. In each case, two different laser powers were used, with the same welding depth compared to samples welded using their respective other wavelengths, to investigate the hypothesis that changing the laser wavelength would alter the local energy distribution and dynamics inside the lock hole, including fluctuations in the lock hole opening, formation of splashes, acoustic emission, and resulting porosity. The experiment was monitored and compared through metallographic analysis and multi-sensor setup (including splash tracking, lock hole area tracking, and airborne acoustic emission measurement), and the results confirmed this hypothesis.

1. Changing the laser wavelength from 1030 nm to 445 nm will alter the dynamic of the laser beam deep penetration welding lock hole for pure nickel.

2. When welding pure nickel, the effect of Fresnel absorption coefficient on welding penetration decreases with the increase of aspect ratio when the laser beam wavelength changes from infrared wavelength to blue wavelength.

3. Compared with the wavelength of the blue laser beam, using an infrared laser beam with a lower Fresnel absorption coefficient can reduce the porosity of nickel welds.

4. For laser beam deep penetration welding of nickel, compared with welding processes using infrared laser beam wavelengths, using blue wavelengths with higher Fresnel absorption coefficients can reduce spatter and improve process stability.

5. Through airborne acoustic analysis, significant differences can be detected when welding nickel using blue wavelength and infrared wavelength.

Source: Yangtze River Delta Laser Alliance

Related Recommendations
  • Frankfurt Laser Company launches a new high-power fiber coupled laser diode

    The global leader in laser technology solutions, Frankfurt Laser, has launched a new series of high-power fiber coupled laser diodes, setting a new standard in the laser industry. The innovative 9XXnm high-power fiber coupled laser diode aims to optimize fiber laser pump source applications, providing unparalleled efficiency, compactness, and brightness.The New Era of Laser TechnologyThe latest pr...

    2024-05-13
    See translation
  • Revealing the essence of optical vortices: a step towards understanding the interaction between light and matter

    In a groundbreaking scientific study published in Volume 13 of the Scientific Report, researchers reported on the results of Young's double slit interference experiment using oscillating vortex radiation under a photon counting system. The experiment involves using a spiral oscillator to emit second harmonic radiation in the ultraviolet range. Using an ultra narrow bandpass filter in the low curre...

    2023-12-29
    See translation
  • AWOL Vision will showcase cutting-edge laser projectors and award-winning innovations at CEDIA 2023

    AWOL Vision has announced that it will be showcasing the latest innovations in home entertainment at this year's CEDIA Expo in Denver, Colorado from September 7-9.At the show, AWOL Vision will debut the new LVV-3000 Pro and LVV-3500 Pro laser projectors with Dolby Vision and Control4 integration, and will showcase the latest Vanish TV, The TV recently received the prestigious "IFA 2023 Best of the...

    2023-09-08
    See translation
  • Omnitron Announces Partnership with Silex Microsystems to Mass Produce MEMS Scanning Mirrors for LiDAR

    According to reports, Omnitron Sensors, a pioneer in the development of MEMS sensing technology for large-scale and low-cost markets, recently announced that it will collaborate with Silex Microsystems, a subsidiary of Semielectronics, to mass produce MEMS scanning mirrors for LiDAR.Eric Aguilar, co-founder and CEO of Omnitron Sensors, said, "We have noticed a huge demand from manufacturers of adv...

    2023-09-19
    See translation
  • Laser giant seeks $100 million financing for $422 million debt restructuring

    On August 6th local time, Luminar, a leading publicly traded company in the field of LiDAR, announced a $422 million debt restructuring and raised $100 million in new capital. This measure marks Luminar taking solid steps in optimizing its capital structure and enhancing its financial stability.In early May this year, this laser radar manufacturer released an open letter disclosing a major strateg...

    2024-08-09
    See translation