English

Japan and Germany jointly develop ultra high speed laser material deposition technology

1036
2024-10-25 11:12:09
See translation

Makino Machine Tool Company, headquartered in Tokyo, Japan, and Fraunhofer Institute for Laser Technology (ILT), headquartered in Aachen, Germany, have collaborated to combine ultra-high speed laser material deposition (EHLA) and near net shape additive manufacturing (EHLA3D) with a five axis CNC platform. The new system developed can efficiently produce, coat, or repair complex geometric shapes of high-strength materials, shorten production time, and potentially extend the life of key components of high-value equipment, including large aircraft.

 


In order to integrate ultra high speed laser material deposition technology into a five axis CNC platform, the Fraunhofer Laser Technology Research Institute and Makino Company have achieved fast dynamic movement of the machining head based on kinematic research, allowing flexible processing of various geometric shapes and coating of components with various materials.

The task of Makino Company in this project is not limited to the hardware of CNC machine tools, but also includes a complete redesign of process control methods. The difficulty lies in technically adapting the machine tools to high acceleration, optimizing process control and machine kinematics, and accurately controlling the interaction between laser beams and materials. The machine tool developed by Makino Singapore subsidiary achieves an effective feed rate of up to 30 meters per minute, which is significantly improved compared to traditional systems. This speed is particularly advantageous when processing large and complex components, as it can significantly shorten processing time.

With decades of experience in laser metal deposition (LMD) processes and component development, the Fraunhofer Institute of Laser Technology has optimized the process parameters for processing various materials, including adjusting laser parameters, fine-tuning powder feeding, and optimizing the motion control of CNC machine tools. The feeding rate and powder gas injection are used to control the heat introduced into the materials. By adjusting the feed rate and powder mass flow rate, precise control of heat input can be achieved, reducing the heat affected zone and ensuring uniform coating quality. In addition, by using high feed rates and optimized powder feed, the deposition efficiency of material applications can be significantly improved with the same or even higher precision, thereby enhancing the overall efficiency of the production process.

In addition to additive manufacturing applications, this new system also has the potential to be applied in the field of maintenance. For many expensive components with minor defects that must be replaced, Makino's flexible system with rotating and tilting workbenches can provide maintenance services, saving the cost of new products, avoiding transportation and delivery time, and minimizing downtime. A key aspect of future development is to identify and validate new application areas for Near Net Shape Additive Manufacturing (EHLA3D) processes, particularly in the application of multi material systems and the production of fine structures.

Source: Yangtze River Delta Laser Alliance

Related Recommendations
  • BLM Launches Tunable 4kW Five Axis Laser Cutting System

    Recently, the Italian laser pipe processing group BLM Group announced the launch of an LT-Free five axis laser cutting system that can be used for laser cutting and processing of any three-dimensional metal profile, including bending forming, hydraulic forming, extrusion forming, deep drawing forming, flat or stamped forming of pipe fittings or plates.This five axis laser cutting system can provid...

    2023-10-11
    See translation
  • Tokyo Institute of Technology collaborates with EX Fusion to promote laser fusion energy closer to commercialization

    Recently, Tokyo Institute of Technology and EX Fusion established a collaborative research group focused on promoting liquid metal equipment to achieve commercial laser fusion reactors. The two sides held an official signing ceremony in Tokyo on October 11th, marking the official start of their cooperation.The EX Fusion Liquid Metals Collaborative Research Group was established with the support of...

    2023-10-17
    See translation
  • Researchers at Georgia Institute of Technology have developed cost-effective nanoscale printing

    A team of researchers from Georgia Institute of Technology has developed a scalable printing system for metal nanostructures using a new technology called superluminescent light projection. The inventor of this technology Dr. Sourabh Saha and Jungho Choi submitted a patent application for nanoscale printing.Nowadays, the cost of existing nanoscale printing technologies hinders their widespread use...

    2024-02-19
    See translation
  • Korean POSTECH develops stretchable color adjustable photonic devices

    Liquid crystal elastomers are expected to be applied in displays, sensors, smart devices, and wearable devices.A team from POSTECH University in South Korea, led by Professor Su Seok Choi and Professor Seungmin Nam, has developed a new type of stretchable photonic device that can control the wavelength of light in various directions.This work was carried out by the Department of Electrical Enginee...

    2024-06-11
    See translation
  • Progress in research on neodymium doped strontium aluminate lanthanum magnesium laser crystals by Shanghai Optics and Machinery Institute

    Recently, the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the research of Nd: ASL (Sr0.7Nd0.05La0.25Mg0.3Al22.7O19) laser crystals, and the related achievements were published in Infrared Physics&Technology under the title of "Tunable laser operations on Nd doped cont...

    2024-04-17
    See translation