English

Scientists have demonstrated a new way to make infrared light from quantum dots, and the experiments are still in the early stages

707
2023-09-08 14:11:19
See translation

Scientists at the University of Chicago have demonstrated a way to create infrared light using colloidal quantum dots. The researchers say this approach shows great promise; Although the experiment is still in its early stages, these quantum dots are already as efficient as existing conventional methods.

These points could one day form the basis of infrared lasers, as well as small and inexpensive sensors, such as those used in emissions tests or breathalyzers.

"Currently, the performance of these quantum dots is close to that of existing commercial infrared light sources, and we believe we can significantly improve this," says Philippe Guyot-Sionnest, co-author of the study published in Nature Photonics. One of the three authors on the paper.

Suitable wavelength

Colloidal quantum dots are tiny crystals - you could fit a billion crystals at the end of this sentence - and they will emit different colors of light, depending on how big you make them. They are highly efficient, easy to manufacture and are already used in commercial technology; You may have already bought a quantum dot TV and not know it.

However, these quantum dots are being used to make light at visible wavelengths - the part of the spectrum that humans can see. If you want quantum-dot light at infrared wavelengths, you're making a big mistake.

But infrared light has many uses. In particular, it's very useful for making sensors. For example, if you want to know if there are harmful gases in your car's exhaust, or test if you are breathing over the legal alcohol limit, or make sure there is no methane gas in your drilling equipment, you can use infrared. That's because different types of molecules absorb specific wavelengths of infrared light, so they're easy to tell apart.

Infrared lasers are now manufactured by a method called molecular epitaxy, which works well but requires a lot of labor and cost. Scientists think there may be another way.

Guyot-Sionnest and his team have been experimenting with quantum dots and infrared technology for years. Building on their previous invention, they set out to try to recreate a "cascade" technique that has been widely used to make lasers but has never been achieved on colloidal quantum dots.

In this "cascade" technique, researchers apply an electric current to the device, sending millions of electrons through the device. If the structure of the device is just right, the electrons will pass through a series of different energy levels, as if falling down a series of waterfalls. Every time an electron drops an energy level, it has a chance to release some of its energy in the form of light.

The researchers wondered if they could create the same effect with quantum dots. They created a black "ink" made up of trillions of tiny nanocrystals, spread it on a surface, and let an electric current pass through it.

"We thought it might work, but we were really surprised at how well it worked," Guyot-Sionnest said. "From our first attempt, we saw the light."

In fact, they found that this method is already as effective as other traditional methods of generating infrared light, even in exploratory experiments. The scientists say that with further improvements, the method could easily outperform existing methods.

Potential application

They hope the discovery will significantly reduce the cost of infrared light and lasers, opening up new applications.

"I think this is one of the best examples of the potential applications of quantum dots," Guyot-Sionnest said. "Many other applications can be achieved with other materials, but this structure really only works because of quantum mechanics." I think it's moving the field forward in a really interesting way."

Source: Chinese Optical Journal Network

Related Recommendations
  • Laser printing on fallen leaves can produce sensors for medical and laboratory use

    The manufacturing of sensors through 3D printing combines speed, design freedom, and the possibility of using waste as a substrate. In the circular economy model, various results have been achieved, and typically discarded residues are used as low-cost resources. A research team in Brazil has proposed a highly creative solution that involves printing electrochemical sensors on fallen leaves. The t...

    2024-05-16
    See translation
  • Developing nanocavities for enhancing nanoscale lasers and LEDs

    As humanity enters a new era of computing, new small tools are needed to enhance the interaction between photons and electrons, and integrate electrical and photon functions at the nanoscale. Researchers have created a novel III-V semiconductor nanocavity that can limit light below the so-called diffraction limit, which is an important step towards achieving this goal.In the journal Optical Materi...

    2024-01-29
    See translation
  • Progress has been made in the corrosion mechanism of alkali aluminum phosphate glass at Shanghai Optics and Machinery Institute

    Recently, the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, has made new progress in the corrosion mechanism of alkali aluminophosphate glass. The research findings were published in The Journal of Physical Chemistry C under the title "Formation Mechanism of Crystal Phase during Corrosion ...

    2024-07-10
    See translation
  • Amplitude's 2024 performance shows steady growth

    In 2024, Amplitude's performance will continue to maintain steady growth, thanks to our continuous innovation in femtosecond laser technology and deep market expansion The application performance of high-power femtosecond lasers in precision microfabrication and industrial manufacturing such as semiconductors is particularly impressive, "said Ruan Xia, Sales Director of Amplitude Laser Solutions D...

    02-17
    See translation
  • Chinese researchers have developed for the first time a room temperature HoYLF thin film laser

    In a study published in Optics Express, the research team led by Professor Fu Yuxi of the Xi'an Institute of Optics and Precision Mechanics (XIOPM) of the Chinese Academy of Sciences developed the room temperature holmium doped lithium yttrium fluoride (Ho: YLF) composite thin slice laser for the first time, which can achieve high efficiency and high-quality CW laser output.Laser devices operating...

    02-21
    See translation