English

Top management changes at Laser Photonics Corp., a US laser equipment manufacturer

6
2024-11-20 14:05:47
See translation

Recently, Laser Photonics Corp. (LPC), a Nasdaq listed equipment developer, announced that it has appointed John T. Armstrong as its new Executive Vice President.

 



Before assuming his position at LPC, Armstrong served as Vice President of Astronics Test Systems, a subsidiary of Astronics Corporation, a global leader in advanced technology and products in critical mission areas such as aerospace and defense. Earlier, he served as a senior manager at Boeing, providing leadership and human resources support to over 10000 employees and leading the department to achieve over $4.5 billion in revenue. In the early stages of his career, he served as a senior expert in human resources management, providing comprehensive human resources support to three institutions and four specialized departments.

Armstrong holds a Master of Business Administration and a Master of Arts in Management Systems from Webster University. He holds a Bachelor's degree in Mechanical Engineering from Villanova University. Armstrong has over 30 years of leadership experience in B2B strategic planning, operations, and human resources.

On November 14th, LPC released its third quarter performance, with the following financial data:
Revenue: 800000 US dollars, compared to 1.3 million US dollars in the same period last year;
Gross profit: 600000 US dollars, compared to 1 million US dollars in the same period last year;
Operating loss: 1.7 million US dollars, compared to 900000 US dollars in the same period last year;
Net loss: increased from $900000 to $1.6 million;

LPC believes that the decline in the company's performance in the third quarter is mainly due to its increased investment in human resources, sales, and administrative functions, which has affected the company's performance in the short term. But in the long run, these strategic measures are crucial for LPC's future growth.

In terms of business, LPC has received multiple CleanTech customer orders this year, including Acuren, a leader in non-destructive testing services, a polycrystalline silicon manufacturer in the semiconductor and solar fields, and a global enterprise in the oil and gas fields. In addition, LPC has also received a DefenseTech order from the US Navy, and its Pearl Harbor Naval Shipyard and intermediate maintenance facility have integrated LPC's DefenseTech laser system for removing corrosion from naval vessels.

At the strategic layout level, LPC will expand its cooperation with Brokk to its Australian subsidiary this year, introducing laser cleaning and laser cutting technology into mining, tunneling, construction, metal processing, and military ecosystems in Australia, New Zealand, and the entire Asia Pacific region.

It is worth mentioning that LPC recently announced that the company has signed a final agreement to acquire Control Micro Systems, Inc. (hereinafter referred to as CMS), which will be completed shortly after the third quarter. Although LPC's market value has shrunk by 70% due to previous short selling allegations, it still resolutely chose to buy the bankrupt company at the bottom, seeing it as a key opportunity to promote LPC's transformation.

CMS focuses on customizing precision laser systems, including laser drilling for controlled release drugs and anti-counterfeiting solutions. This acquisition will enable LPC to enter the large and rapidly growing healthcare and pharmaceutical industries, especially in the fields of controlled release drug delivery and anti-counterfeiting pills. This is a high threshold and anti cyclical industry, and it will also bring synergies to LPC's industrial market. In addition, LPC plans to fully integrate the existing CMS team, including engineers and customer support specialists, to ensure a smooth transition for CMS employees and guarantee the continuity of service and support for existing customers during the transition period.

Recently, LPC also announced the construction of a 50000 square foot factory and is fully committed to promoting the research and development of new additive manufacturing technologies and systems, actively responding to the urgent needs of the semiconductor industry, and accelerating the development of laser shielding anti drone systems (LSAD).

LPC has released a concept video for the prototype of the Laser Shield Anti Drone System (LSAD). LSAD is a solution being developed to prevent unauthorized drone activity, and this technology will play a critical role in the defense market.

Source: OFweek

Related Recommendations
  • Scientists propose new methods to accelerate the commercialization of superlens technology

    Superlenses are nano artificial structures that can manipulate light, providing a technique that can significantly reduce the size and thickness of traditional optical components. This technology is particularly effective in the near infrared region, and has great prospects in various applications, such as LiDAR, which is called "the eye of autonomous vehicle", mini UAV and blood vessel detector.D...

    03-29
    See translation
  • The world's most powerful laser attempts to unravel the secrets of the universe

    They are the strongest lasers in history, and their beams are helping scientists explore the structure of the universe.In a research laboratory at the University of Michigan, bright green light fills the vacuum chamber of a technology giant. It is the size of two tennis courts. The walls are shielded with 60 centimeters of concrete to prevent radiation leakage, and workers wear masks and hairnets ...

    2023-11-28
    See translation
  • Southeast University makes new progress in quantum efficiency research of van der Waals light-emitting diodes

    Recently, Professor Ni Zhenhua from the School of Electronic Science and Engineering at Southeast University, Professor Lv Junpeng from the School of Physics, Professor Liu Hongwei from the School of Physical Science and Technology at Nanjing Normal University, and Professor Zhou Peng from the School of Microelectronics at Fudan University collaborated to propose a van der Waals light-emitting dio...

    10-28
    See translation
  • Advanced optical giant Schott announces completion of Malaysia factory

    Recently, German optical giant SCHOTT is pleased to announce that its advanced production plant located in Gulim, Kedah, Malaysia has been successfully completed. This milestone event was celebrated with the joint witness of employees, clients, and representatives from the Malaysian Investment Development Authority (MIDA).The completion of the new factory marks a significant increase in Schott's...

    10-16
    See translation
  • Progress has been made in the development of anti resonant hollow core fiber Raman probes with low background noise at Shanghai Optics and Machinery Institute

    Recently, the research team of the Special Glass and Fiber Research Center of the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, aimed at the demand for in-situ detection of Raman signals, expanded the functions of the laboratory commercial Renishaw Invia confocal micro Raman spectrometer by usi...

    05-22
    See translation