Türkçe

Fundamentals of Next Generation Photonic Semiconductors: Small Lasers

160
2023-11-13 14:05:18
Çeviriyi gör

This week, an illustration was published on the cover of the international journal Science, showcasing a powerful mode-locked laser emitted from a miniature photonic semiconductor.

A research team led by Alireza Marandi, a professor of electrical engineering and applied physics at the California Institute of Technology, has successfully developed a conventional mode-locked laser large enough to fit into microchips, which was published in the journal Science on the 9th local time.

MLL is a laser that generates powerful microwave light. Through microwave light, details of femtosecond and attosecond natural phenomena can now be observed, which were previously unseen.

By using these short laser pulses, microstructure that cannot be observed by an optical microscope can be identified. Imaging can be performed on the internal tissues of cancer lumps and the photosynthesis process in plant leaves. That's why MLL is also known as the foundation of modern accelerator research and technology.

However, so far, MML has only been developed in a cumbersome form, which limits its application in chip level nano optical devices that handle very little light in a very small space.

The research team has developed a "small mode locked laser" based on lithium niobate. The MML developed by the research team works at the nanoscale and measures much higher pulse energy and peak power compared to the MLL used in existing nano optical platforms.

The journal Science published the study on its cover and commented that the development of this technology will reduce the size of existing MLLs to the size of chips, stimulating the development of photonic based semiconductors that surpass existing semiconductor levels.

Photonic semiconductors use light instead of electricity and are considered the next generation technology because they can transmit data tens of times faster than existing devices while reducing power consumption. Especially, it is expected to be combined with artificial intelligence and high-performance sensors to achieve rapid information transmission and reception.

Source: Laser Network

İlgili öneriler
  • Two photon absorption quantum mechanism breaks through the resolution and efficiency limits of optical nanoprinting

    Recently, a research team from the School of Physics and Optoelectronic Engineering at Jinan University has elucidated for the first time the time-dependent quantum mechanism of two-photon absorption and proposed a two-photon absorption (fpTPA) optical nanoprinting technology based on few photon irradiation, successfully breaking through the bottleneck of traditional two-photon printing technology...

    03-06
    Çeviriyi gör
  • Shanghai Optical Machine has made progress in frequency shift of even harmonic of single layer MoS2

    Recently, the research team of the State Key Laboratory of High-Field Laser Physics at the Shanghai Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made progress in using high-field lasers to drive the even harmonic frequency shift of single-layer MoS2. The results were published in Optics Express under the title "Frequency shift of even-order high harmonic generation...

    2023-09-07
    Çeviriyi gör
  • SEMA 2023: Huali's Easy Level Floating Free Laser Fuel Level Transmitter

    Winning the SEMA Best Engineering New Product Award is not an easy task. Therefore, it said a lot about Huali's new non floating fuel transmitter bringing hardware home. The Easy Level fuel level sender is a brand new design that does not rely on traditional float arm settings, but uses a frikken laser beam to measure the fuel level in the tank.More precisely, Easy Level uses LiDAR technology to m...

    2023-11-03
    Çeviriyi gör
  • Acta: Revealing the mechanism of defect formation in additive manufacturing

    Main author: Yanming Zhang, Wentao Yana*The first unit: National University of SingaporePublished Journal: Acta MaterialiaResearch backgroundIndustry pain point: Although laser powder bed melting (LPBF) technology can manufacture complex components, the lack of consistent product quality is still the core bottleneck restricting its industrial application. Research has shown that up to 35% of proce...

    02-21
    Çeviriyi gör
  • ComNav Technologies introduces Mars Pro Laser RTK

    ComNav Technology Ltd. has introduced the Mars Pro Laser RTK, the latest addition to its Universe series GNSS receiver product line, which includes the Venus Laser RTK and Mars Laser RTK. The GNSS receiver is suitable for the land surveying, GIS and construction industries with its innovative features.Mars Pro's laser mode facilitates the use of conventional GNSS receivers in areas where signals a...

    2023-09-13
    Çeviriyi gör