English

Investing nearly £ 520 million, this synchrotron light source in the UK will be upgraded

1093
2023-09-27 13:56:59
See translation

Recently, the UK's national synchrotron "Diamond Light Source" announced an investment of nearly £ 520 million ($648.3 million) to implement three new flagship beam lines and upgrade existing beam lines. This comprehensive upgrade will be delivered by 2030.

The Department for Science, Innovation, and Technology and the biomedical charity Wellcome jointly approved the facility upgrade project, with 86% of the £ 520 million funding from the UK government and 14% from the Wellcome Foundation.

The "Diamond Light Source" accelerator located in Oxford, UK is essentially a huge microscope that can generate light 10 billion times brighter than the sun. This light is directed to a laboratory called a beam line, where a series of scientific research fields are conducted.

Its power is 10000 times that of traditional microscopes. In addition to groundbreaking medical discoveries, it is crucial for studying a range of themes, including ancient paintings and fragments of fossils, while finding solutions to extend the lifespan of machinery such as engines and turbine blades.

The new fourth generation synchrotron will support a growing user base of researchers while maintaining the UK's world leading position in cutting-edge science.

The Diamond II upgrade, which lasts for several years, is part of the complete Diamond light source upgrade plan and will include an 18 month "dark period" where all beams will be inactive, followed by a period of time when new facilities will be fully launched, including three new flagship beam lines and many major upgrades to other beam lines. In addition to the "Diamond ii" program, it will also cover new devices that replace synchronous accelerator machines, enabling them to generate brighter light, as well as new computing hardware and software.

The advancement of accelerator technology means that Diamond II will provide opportunities for the scientific community in academia and industry to develop brighter beams and increased coherence within the large energy range of all our beam lines and additional beam lines, "said Adrian Smith, Chairman of the Diamond Light Source Board of Directors and Chairman of the Royal Society. In addition, Diamond Light Source's funding announcement states that the upgrade is expected to pave the way for material research and accelerated drug development, as well as provide real-time insights into advanced manufacturing and next-generation battery performance processes.

Source: OFweek

Related Recommendations
  • Scientists have used 3D integration technology to bring ultra-low noise lasers without isolators to silicon photonics

    After electronic integrated circuits (Eics), silicon (Si) photonics technology is expected to achieve photonic integrated circuits (PIC) with high density, advanced functions and portability. Although various silicon photonics fountifiers are rapidly developing PIC capabilities to enable mass production of modulators, photodetectors and, more recently, lasers, silicon PIC has not yet met the strin...

    2023-08-04
    See translation
  • The physicist who built the ultrafast "attosecond" laser won the Nobel Prize

    Pierre Agostini, Ferenc Krausz, and Anne L'Huillier won the award for their ultra short optical pulses, which made close research on electrons possible.Ferenc Klaus, Anne Lullier, and Pierre Agostini (from left to right)Image sources: BBVA Foundation, Kenneth Ruona/Lund University, Ohio State UniversityThis year's Nobel Prize in Physics was awarded to three physicists - Pierre Agostini of Ohio St...

    2023-10-09
    See translation
  • Developing miniaturized laser technology: This company has secured $5 million in financing

    Recently, high-performance laser supplier Skylark Lasers announced that it has raised $5 million in investment to further advance its efforts in miniaturized laser technology.Skylark Lasers is established at the center of the Scottish Photonics Cluster, focusing on the design and production of compact diode pumped solid-state (C-DPSS) lasers with the purest spectral characteristics, providing high...

    2023-11-02
    See translation
  • The Stanford University team has manufactured the first practical chip grade titanium sapphire laser

    According to a report in Nature on June 26th, a team from Stanford University in the United States has developed a titanium sapphire laser on a chip. Whether in terms of scale efficiency or cost, this achievement is a huge progress. Image source: Nature websiteTitanium sapphire lasers are indispensable in many fields such as cutting-edge quantum optics, spectroscopy, and neuroscience, but they ...

    2024-07-01
    See translation
  • Bodor Laser: Laser Cutters Rank First in Global Sales for Six Consecutive Years

    On February 27, at Bodor Laser's global headquarters base in Licheng District, Jinan City, three automated production lines were operating at full capacity, struggling to meet the overwhelming demand. Lu Guohao, Secretary of the Board and Director of the President's Office at Bodor Laser, revealed that the company's laser cutter shipments exceeded 8,000 units in 2024, securing the top spot in glob...

    03-10
    See translation