English

Investing nearly £ 520 million, this synchrotron light source in the UK will be upgraded

996
2023-09-27 13:56:59
See translation

Recently, the UK's national synchrotron "Diamond Light Source" announced an investment of nearly £ 520 million ($648.3 million) to implement three new flagship beam lines and upgrade existing beam lines. This comprehensive upgrade will be delivered by 2030.

The Department for Science, Innovation, and Technology and the biomedical charity Wellcome jointly approved the facility upgrade project, with 86% of the £ 520 million funding from the UK government and 14% from the Wellcome Foundation.

The "Diamond Light Source" accelerator located in Oxford, UK is essentially a huge microscope that can generate light 10 billion times brighter than the sun. This light is directed to a laboratory called a beam line, where a series of scientific research fields are conducted.

Its power is 10000 times that of traditional microscopes. In addition to groundbreaking medical discoveries, it is crucial for studying a range of themes, including ancient paintings and fragments of fossils, while finding solutions to extend the lifespan of machinery such as engines and turbine blades.

The new fourth generation synchrotron will support a growing user base of researchers while maintaining the UK's world leading position in cutting-edge science.

The Diamond II upgrade, which lasts for several years, is part of the complete Diamond light source upgrade plan and will include an 18 month "dark period" where all beams will be inactive, followed by a period of time when new facilities will be fully launched, including three new flagship beam lines and many major upgrades to other beam lines. In addition to the "Diamond ii" program, it will also cover new devices that replace synchronous accelerator machines, enabling them to generate brighter light, as well as new computing hardware and software.

The advancement of accelerator technology means that Diamond II will provide opportunities for the scientific community in academia and industry to develop brighter beams and increased coherence within the large energy range of all our beam lines and additional beam lines, "said Adrian Smith, Chairman of the Diamond Light Source Board of Directors and Chairman of the Royal Society. In addition, Diamond Light Source's funding announcement states that the upgrade is expected to pave the way for material research and accelerated drug development, as well as provide real-time insights into advanced manufacturing and next-generation battery performance processes.

Source: OFweek

Related Recommendations
  • Ireland's first biological Brillouin microscope at Trinity College Dublin

    A project at Trinity College Dublin is now hosting Ireland's first BioBrillouin microscope instrument, applying Brillouin spectroscopy to life sciences and medicine.This should in particular enhance the College's research into cellular and tissue mechanics for the study of inflammation, cancer, and developmental biology.Brillouin microscopy offers a route to optical investigation of a biological s...

    07-14
    See translation
  • Dutch satellite instruments have achieved milestone achievements in transmitting laser data to Earth

    TNO wrote that this is the first time Dutch technology has been used to send data from a satellite to a ground station press release on Earth. This technology uses invisible laser signals to achieve faster and safer data flow compared to ubiquitous communication radio frequencies.Kees Buijsrogge, Director of TNO Space, said, "This critical milestone marks a significant achievement for the Netherla...

    2024-01-25
    See translation
  • Coherent Unifies Ultrafast Laser Business at the Glasgow Center of Excellence

    Recently, Coherent, an American laser system solution provider, announced that all of the company's ultra fast laser business, including the manufacturing of all picosecond and femtosecond lasers, will be unified in one place: the Ultra Fast Center of Excellence in Glasgow, Scotland.Previously, Coherent's Ultra Fast Center of Excellence located in Glasgow was already a state-of-the-art mass produc...

    2023-09-22
    See translation
  • Theoretical physicist Farok Miwivar studied the interaction between two sets of luminescent atoms in a quantum cavity

    Theoretical physicist Farok Miwivar studied the interaction between two sets of luminescent atoms in a quantum cavity - a quantum cavity is an optical device composed of two excellent small mirrors that can capture light in a small area for a long time.This model and its predictions can be used for the next generation of superradiance lasers. They can be used and observed in cutting-edge cavity/wa...

    2024-02-21
    See translation
  • LiDAR solutions provider Cepton acquired by KOITO

    On July 29, 2024, Cepton, a provider of high-performance LiDAR solutions, announced the signing of the final agreement for its acquisition, making it the acquiring company's subsidiary in the United States.Image source: CeptonAccording to the agreement, the acquirer is the internationally renowned automotive lighting giant KOITO, which was established in 1915 and has a history of over a hundred ye...

    2024-08-01
    See translation