English

Germany and the United States jointly build a $150 million laser equipment laboratory for studying inertial fusion energy and high energy density physics

1167
2023-08-10 18:21:03
See translation
German laser Fusion developer Marvel Fusion said it will partner with Colorado State University (CSU) on a new $150 million laser equipment lab to study inertial fusion energy and high energy density physics.

"It will be home to one of the most powerful laser facilities in the world and an international center for laser fusion energy and high energy density physics research," the company said in a statement announcing the agreement.
A public-private partnership supported by the U.S. Department of Energy's LaserNetUS program will establish a "next-generation high-power laser and fusion research facility" at the Foothills campus of Colorado State University.

Ultrafast method

As one of the few new venture-backed private companies targeting commercial laser-driven Fusion energy, Marvel Fusion says the state-of-the-art facility will serve as a platform to advance its unique approach to this enormous challenge.

The startup has strong ties to the Extreme Light Infrastructure (ELI) project in Eastern Europe, and its chief technology officer Georg Korn was formerly the ELI's technical director.

Korn co-founded the company in 2019 with CEO Moritz von der Linden, Karl-Georg Schlesinger and Pasha Shabalin. Previously, the company has raised €60 million in funding and partnered with defense giant Thales to upgrade Romania's 10 gigawatt Extreme Optics - Nuclear Physics Project (ELI-NP) facility and set up a U.S. subsidiary.

The company plans to use ultrafast lasers and "nanostructured" fuels to enhance the fusion of protons and boron-11 isotopes.

"This public-private partnership sets the global standard for laser fusion research and advances the development of safe, clean and reliable energy." This is an incredible step forward for Marvel Fusion and a testament to our success and vision."

"Over the past two years, I have worked with the world-class team at Colorado State University to achieve immeasurable results. We are grateful to Colorado State University, the state of Colorado, and the U.S. Department of Energy for their trust and support of the LaserNetUS project."
 

LaserNetUS covers the most powerful lasers in the United States and Canada

10Hz Repetition rate

The new lab, scheduled for completion in 2026, is expected to have at least three laser systems, each with a peak power of multiple pewatts and a repetition rate of 10 Hertz. "Such a combination of lasers will make the facility unique in the world, and it will be designed to accommodate future extensions and additional lasers," the company said.

Marvel Fusion is working on a proton-boron fusion method. The company has developed a short-pulse laser technology with direct diode pumping. The company's approach utilizes a peak power laser output of more than 10 PW and relies on its diode technology to ensure that its lasers can deliver pulse repetition rates of up to 10 Hz.

"Csu is at the forefront of laser research, and this new partnership will solidify CSU's position as an international leader in laser science, a field that has the potential to bring profound benefits to our planet for generations to come," said CSU President Amy Parsons.

The LaserNetUS project, funded by the U.S. Department of Energy's Office of Fusion Energy Sciences, recently announced $28.5 million in new funding support for high-power laser laboratories in the United States and Canada.

The U.S. Department of Energy has awarded CSU $12.5 million for laser upgrade prototypes that will help create and maintain the quality and expertise of equipment that makes projects like the new lab facility possible.

Marvel Fusion said that through the collaboration, Colorado State University's ability to conduct high-power laser research and its applications will be greatly expanded, with opportunities in semiconductor chip production, materials science, high energy density science and high energy physics, of which fusion is just one application.

It is expected to inspire and facilitate further collaboration with industry, other universities and US national laboratories.

Prototype development

"This is an exciting opportunity for laser-based science, an ideal facility for discovery and advanced technology development with enormous potential for societal impact," Jorge Rocca, director of the Advanced Laser and Extreme Photonics Laboratory at Colorado State University, said in the release.

In addition to the CSU project, Marvel Fusion says it is planning to build a prototype as the next step toward a commercial fusion power plant.

"The prototype will house hundreds of laser systems capable of fusion ignition and demonstrate the technology at scale," the company said. The company will conduct the work through its Colorado subsidiary.

Source: Yangtze River Delta Laser Alliance

Related Recommendations
  • Progress in the Application of China University of Science and Technology's Femtosecond Laser Processing Technology in the Biomedical Field

    Recently, Associate Professor Li Jiawen's research group at the Micro and Nano Engineering Laboratory of the School of Engineering Science, University of Science and Technology of China proposed a femtosecond laser dynamic holographic processing method suitable for efficient construction of three-dimensional capillary scaffolds, which is used to generate a three-dimensional capillary network. This...

    2024-02-11
    See translation
  • Breakthrough development of terahertz quantum cascade lasers

    With the development of groundbreaking components for terahertz quantum cascade lasers, a huge leap has been made in the field of laser technology. A group of researchers have successfully designed a broadband single-chip external coupler with the potential to redefine the functionality of terahertz QCL.The new external coupler is fundamentally based on planar bimetallic waveguides. Its design is ...

    2024-01-04
    See translation
  • Overview of Residual Stress in Metal Additive Manufacturing: Detection Techniques, Numerical Simulation, and Mitigation Strategies

    Researchers from Shantou University have reported a review of residual stresses in metal additive manufacturing: detection techniques, numerical simulations, and mitigation strategies. The relevant paper titled "A comprehensive review of residual stress in metal additive manufacturing: detection techniques, numerical simulations, and mitigation strategies" was published in the Journal of the Brazi...

    2024-12-20
    See translation
  • Shanghai University of Technology publishes the latest Nature paper

    With the increasing demand for human data, the requirements for data storage methods are also increasing. Optical Data Storage (ODS) is a light based storage method commonly used in DVDs, which is low-cost and very durable. But ODS usually stores data in a single layer, and the amount of data that can be stored is limited. Gu Min, academician of Shanghai University of Technology, Wen Jing, and Rua...

    2024-02-26
    See translation
  • Toshiba has developed the world's highest precision 99.9% LiDAR technology

    Recently, Toshiba announced that in the field of LiDAR lidar for distance measurement, it has developed a technology that can track vehicles, people, and other objects with 99.9% accuracy, achieving the world's highest accuracy. And only using LiDAR to collect data can achieve 98.9% object recognition.In addition, the detection distance in rainstorm and dense fog environments has been increased by...

    2023-10-06
    See translation