English

Scientists develop high-power fiber lasers to power nanosatellites

1039
2024-01-18 16:03:41
See translation

The use of lasers in space is a reality. Although radio waves have been the backbone of space communication for many years, the demand for faster transmission of more data has made these lighter, more flexible, and safer infrared rays the future of space communication.

Recently, WipThermal is a European project dedicated to developing groundbreaking solutions for wireless energy transmission in the field of microsatellite power for space exploration. The Institute of Systems and Computer Engineering, Technology and Science is one of the five partners in this project, focusing on the development of high-power fiber lasers. The Institute of Advanced Materials, Nanotechnology, and Photonics Physics and the Faculty of Science at the University of Porto are the entities responsible for coordinating this project.

The research team demonstrated the solution at an air force base in the west coast city of Aveiro, Portugal. Orlando Fraz ã o, a researcher at the INESC TEC Center for Applied Photonics, gave a "very positive evaluation" of the results of the project. "We can increase our understanding of high-power lasers and develop new fiber lasers with various potential applications."

Lasers developed by Portuguese research and development institutes are particularly important in space exploration. Fiber optic communication, where light is used to transmit signals, is a relevant choice in scenarios such as space communication.

"Our role in the alliance is focused on developing a high-power laser entirely utilizing fiber optics, with a working range of 1550 nanometers and a maximum power of 40 watts. In addition, we have designed a telescope that can simultaneously illuminate 27 thermoelectric sensors using a series of lenses," said FCUP researchers and professors.
In the final demonstration of WipThermal at San Jacinto Air Force Base, researchers were able to achieve a power output of 20 watts to power thermoelectric sensors. "Future development may include converting these lasers into pulsed lasers to achieve power close to kilowatts," added Orlando Frazzo.

"The main goal is to develop continuous emission lasers to obtain sufficient power and generate temperature gradients in thermoelectric systems. The use of lasers in space is a reality; however, lasers need to be more careful as they are instruments that can be used for military purposes. We are trying to understand which types of lasers and which functions can be used for academic purposes or as commercial solutions," said the researchers.

"Power" is one of the key words in the project coordinated by the University of Porto. The main goal of WipThermal is to create an innovative wireless energy transfer system to charge the energy storage components used in CubeSat technology.

This is crucial: with the advancement of CubeSat technology, the energy demand in this niche market is also increasing, requiring larger solar panels, efficient energy storage systems, and other energy transmission and collection systems. During the demonstration, the team used a high-power laser to charge the cube satellite. This very small satellite is equipped with a thermoelectric sensor developed by IFIMUP, which can absorb 1500 nanometers of light, thereby improving charging efficiency.

According to Orlando Frasan, it is "too early" to understand the potential impact of the work carried out within the project scope on the future of the industry. However, using WipThermal learning allows researchers to focus on a new European project called Transition. "In this new project, we have provided a business model for the idea of using laser charging," concluded Orlando Frasan.

Source: Laser Net

Related Recommendations
  • Heavyweight Natuer: New progress in the efficiency of perovskite battery modules! Professor Zhang Xiaohong from Suzhou University, an alliance unit, issued a document

    Recently, Professor Zhang Xiaohong and Professor Peng Jun from the Functional Nanomaterials and Soft Materials Research Institute (FUNSOM) of Suzhou University, along with Professor Mohammad Khaja Nazeeruddin, Professor Paul J. Dyson, Professor Zhaofu Fei, and Professor Ding Yong from North China Electric Power University, collaborated to publish their research findings on Dopant additive synergy ...

    2024-04-19
    See translation
  • Panasonic has announced the launch of two new laser projectors

    Panasonic announced the launch of two new 1-Chip 4K DL laser projectors, the PT-REQ15 projector offering 15,000 lumens of brightness, while its counterpart, the PT-REZ15, offers 15,000 lumens of WUXGA resolution.The REQ15 uses Panasonic's Quad Pixel Drive, a two-axis pixel shift technology, to reproduce 4K images. It is capable of projecting 2K/240Hz content on multiple edge hybrid screens with a ...

    2023-09-07
    See translation
  • Researchers use liquid metal and laser ablation to create stretchable micro antennas

    Researchers have developed a new method of making micro stretchable antenna with water gel and liquid metal. These antennas can be used for wearable and flexible wireless electronic devices to provide links between devices and external systems for power transmission, data processing, and communication.Using our new manufacturing method, we have demonstrated that the length of liquid metal antennas...

    2023-09-19
    See translation
  • Mei Xin Sheng: The development of high-precision polarized light crown products has been completed

    On September 5, when Mei Xin Sheng held an analyst meeting, it said that the company has launched a fully integrated ultra-low power optical proximity detection sensor and a three-in-one ambient light and proximity detection sensor with ultra-high sensitivity, which have entered mass production.The research and development of high-precision polarized light crown products has been completed, the fe...

    2023-09-05
    See translation
  • Amazemet uses Siemens Xcelerator software for scaling metal 3D printing

    Polish metal 3D printing company Amazemet uses the Xcelerator software combination from industrial manufacturing company Siemens.The spin off company of Warsaw University of Technology is using Siemens workflow management software to develop its metal powder atomizer and 3D printing post-processing equipment.Amazemet was founded in 2016, and its ultrasonic atomization device is capable of producin...

    2024-04-18
    See translation