English

Scientists develop high-power fiber lasers to power nanosatellites

95
2024-01-18 16:03:41
See translation

The use of lasers in space is a reality. Although radio waves have been the backbone of space communication for many years, the demand for faster transmission of more data has made these lighter, more flexible, and safer infrared rays the future of space communication.

Recently, WipThermal is a European project dedicated to developing groundbreaking solutions for wireless energy transmission in the field of microsatellite power for space exploration. The Institute of Systems and Computer Engineering, Technology and Science is one of the five partners in this project, focusing on the development of high-power fiber lasers. The Institute of Advanced Materials, Nanotechnology, and Photonics Physics and the Faculty of Science at the University of Porto are the entities responsible for coordinating this project.

The research team demonstrated the solution at an air force base in the west coast city of Aveiro, Portugal. Orlando Fraz ã o, a researcher at the INESC TEC Center for Applied Photonics, gave a "very positive evaluation" of the results of the project. "We can increase our understanding of high-power lasers and develop new fiber lasers with various potential applications."

Lasers developed by Portuguese research and development institutes are particularly important in space exploration. Fiber optic communication, where light is used to transmit signals, is a relevant choice in scenarios such as space communication.

"Our role in the alliance is focused on developing a high-power laser entirely utilizing fiber optics, with a working range of 1550 nanometers and a maximum power of 40 watts. In addition, we have designed a telescope that can simultaneously illuminate 27 thermoelectric sensors using a series of lenses," said FCUP researchers and professors.
In the final demonstration of WipThermal at San Jacinto Air Force Base, researchers were able to achieve a power output of 20 watts to power thermoelectric sensors. "Future development may include converting these lasers into pulsed lasers to achieve power close to kilowatts," added Orlando Frazzo.

"The main goal is to develop continuous emission lasers to obtain sufficient power and generate temperature gradients in thermoelectric systems. The use of lasers in space is a reality; however, lasers need to be more careful as they are instruments that can be used for military purposes. We are trying to understand which types of lasers and which functions can be used for academic purposes or as commercial solutions," said the researchers.

"Power" is one of the key words in the project coordinated by the University of Porto. The main goal of WipThermal is to create an innovative wireless energy transfer system to charge the energy storage components used in CubeSat technology.

This is crucial: with the advancement of CubeSat technology, the energy demand in this niche market is also increasing, requiring larger solar panels, efficient energy storage systems, and other energy transmission and collection systems. During the demonstration, the team used a high-power laser to charge the cube satellite. This very small satellite is equipped with a thermoelectric sensor developed by IFIMUP, which can absorb 1500 nanometers of light, thereby improving charging efficiency.

According to Orlando Frasan, it is "too early" to understand the potential impact of the work carried out within the project scope on the future of the industry. However, using WipThermal learning allows researchers to focus on a new European project called Transition. "In this new project, we have provided a business model for the idea of using laser charging," concluded Orlando Frasan.

Source: Laser Net

Related Recommendations
  • The LANL laboratory in the United States uses quantum light emitters to generate single photon light sources

    Recently, the Los Alamos National Laboratory (LANL) in the United States has developed a method for quantum light emitters, which stacks two different atomic thin materials together to achieve a light source that generates circularly polarized single photon streams. These light sources can also be used for various quantum information and communication applications.According to Han Htoon, a researc...

    2023-09-01
    See translation
  • Commitment to achieving 100 times the speed of on-chip lasers

    Although lasers are common in daily life, their applications go far beyond the scope of light shows and barcode reading. They play a crucial role in telecommunications, computer science, and research in biology, chemistry, and physics. In the latter field, lasers that can emit extremely short pulses are particularly useful, approximately one trillionth of a second or less.By operating these lasers...

    2023-11-13
    See translation
  • Edmund Optics acquisition son-x

    Recently, globally renowned optical component manufacturer Edmund Optics announced that the company has acquired ultrasonic assisted systems and high-precision optical manufacturer son-x.Edmund Optics, as a leader in optical technology solutions, has been serving various fields such as life sciences, biomedicine, industrial testing, semiconductors, and laser processing since its establishment in 1...

    01-22
    See translation
  • How to choose between continuous and pulsed fiber lasers?

    Fiber laser, with its simple structure, low cost, high electro-optical conversion efficiency, and good output effect, has been increasing in proportion in industrial lasers year by year. According to statistics, fiber lasers accounted for 52.7% of the industrial laser market in 2020.According to the characteristics of the output beam, fiber lasers can be classified into two categories: continuous ...

    2023-12-20
    See translation
  • GeoCue introduces three new TrueView 3D imaging systems

    Earlier this month, GeoCue, a liDAR mapping hardware and software provider, announced the launch of three new products for its TrueView 3D imaging system. These new systems combine laser scanning and high-resolution imaging, including the TV625, TV680 and TV680LR. All three systems are NDAA-compliant.All three systems are designed to be used in conjunction with drones, and the company note...

    2023-08-04
    See translation