English

Mitsubishi Electric has launched a light source module for high-capacity laser optical communication in outer space

47
2023-08-24 11:15:32
See translation

On August 22nd, Mitsubishi Electric Corporation, a multinational electronics and electrical equipment manufacturing company, announced that it had successfully demonstrated laser optical frequency control using a new light source module, which is a key component of a high-capacity laser optical communication network to be deployed in outer space.

It is reported that this module can generate 1.5 μ The m-wavelength signal was installed on the OPTIMAL-1 nanosatellite jointly developed by industry, academia, and research, and was successfully launched from the International Space Station (ISS) on January 6 this year.

Compared to using traditional large satellites, using nanosatellites enables this demonstration to be carried out at a faster speed and at a lower cost.

Mitsubishi Electric has been developing space based optical technology, which has the potential to increase data capacity (ten times or more), communication speed, and distance compared to systems using radio waves.

Satellite images are increasingly being used to assess the situation in post disaster areas and the condition of remote forest resources. The existing radio wave satellite communication systems are limited in terms of capacity, speed, and distance, so it is necessary to provide new optical systems that improve communication capabilities for faster and higher resolution evaluations from space.

Advanced systems using laser signals are expected to be increasingly adopted, not only because of their superior communication capabilities, but also because they use shorter wavelengths than radio waves, allowing for the use of relatively small and easy to install ground antennas.

Laser communication between satellites requires correction for the "Doppler effect" - the Doppler effect, which is a change in laser optical frequency caused by differences in relative motion speeds between satellites. The new light source module is deployed as the world's first to utilize a wavelength of 1.5 μ The laser frequency can be adjusted to 60 GHz in space, which is enough for "Doppler effect" compensation.

The nanosatellites developed through industry university research cooperation projects require only about one-third of the time required for demonstration in outer space compared to large-scale satellite demonstrations, and the development cost is only one percent of that of large-scale satellite demonstrations.

Takayoshi Fukuyo, CEO of ArkEdge Space Inc., said, "In recent years, the development momentum of nanosatellites has been continuously increasing. Nanosatellites weighing only a few kilograms can be developed and launched at low cost, so they are expected to be used for new applications, such as using a large number of satellites to observe the Earth extensively. The successful demonstration of light source modules on OPTIMAL-1 is expected to drive the deployment of nanosatellites.

Professor Yoshihide Aoyanagi from the University of Fukui said, "The conditions in outer space, including radiation, vacuum, and temperature, create harsh environments for equipment, so demonstrating the ability to operate in space is crucial for the development of satellites. I hope that the successful demonstration of OPTIMAL-1 will promote further progress in the industrial use of nanosatellites.

Future development

Mitsubishi Electric will propose demonstration technologies for large-scale space development projects. In addition, the company will promote nanosatellites as an important demonstration platform for space-related research and development through industry university research cooperation. Mitsubishi Electric will continue to pursue technological development aimed at achieving space-based laser optical communication as soon as possible.

Source: OFweek

Related Recommendations
  • The Laser Industry Shines at the Expo, showcasing the country's key weapons and disruptive new products

    The China International Industrial Expo is an important window and economic and trade exchange and cooperation platform for China's industrial sector to the world, as well as a window for the world to understand the current development status of China's manufacturing industry. It is understood that the scale, energy level, and number of new exhibits of this year's Industrial Expo are all the highe...

    2023-09-23
    See translation
  • Ultra fast laser tracking the "ballistic" motion of electrons in graphene

    Figure 1. The setup of Hui Zhao and his team at the University of Kansas Ultra Fast Laser Laboratory.A team of researchers from the University of Kansas's ultrafast laser laboratory recently managed to capture real-time ballistic transmission of electrons in graphene, which could lead to faster, more powerful, and more energy-efficient electronic devices in the future.The motion of electrons is of...

    2024-01-09
    See translation
  • Afinum Management acquires significant stakes in two laser companies

    Recently, Afinum Management, a private equity firm based in Munich, Germany, has acquired a large stake in two laser companies, with the intention of opening up new laser markets by combining the strengths of three parties.According to media reports, the two companies are ARC Laser in Germany and GNS neo Laser in Israel, and Afinum has agreed with the founders of the two companies that the acquisi...

    2024-08-08
    See translation
  • Researchers develop innovative quantum dot lasers for advanced frequency combs

    Researchers at the University of California, Santa Barbara have made significant breakthroughs in laser technology, introducing a groundbreaking quantum dot mode-locked laser that allows for independent generation of amplitude and frequency modulation combs from a single device. This cutting-edge dual mode laser paves the way for the creation of small-sized and energy-efficient frequency combs for...

    2023-11-17
    See translation
  • Nature Photonics | New Comb Laser Assists Stable and Efficient Generation of Multi wavelength Signals

    Recently, researchers have developed a comb laser with higher stability and efficiency. The use of synthetic reflection self injection locking micro comb design enables the laser to achieve stability and increase conversion efficiency by more than 15 times. This efficient, stable, and easy to manufacture design is expected to make rapid progress in fields such as portable sensors, autonomous navig...

    2024-03-02
    See translation