English

Overview of ultrafast laser micro nano manufacturing technology: material processing, surface/interface control, and device manufacturing

80
2024-08-06 14:36:08
See translation

Researchers from Tsinghua University have summarized the research on ultrafast laser micro nano manufacturing technology, including material processing, surface/interface control, and device manufacturing. The relevant review titled "A Review of Ultrafast Laser Micro/Nano Fabric: Material Processing, Surface/Interface Control, and Device Fabric" was published in Nano Research.

Ultra fast laser processing technology provides a wide range of application opportunities in micro nano manufacturing, nanotechnology, biotechnology, energy science, photonics, and other fields due to its controllable processing accuracy, diverse processing capabilities, and extensive material adaptability. The processing capability and application of ultrafast lasers still need further exploration. In the field of material processing, controlling the atomic scale structure of nanomaterials is challenging. There are complex effects in ultrafast laser surface/interface processing, making it difficult to modulate the nanostructures and properties of the surface/interface as needed. In the process of ultrafast laser manufacturing of micro functional devices, the processing capability urgently needs to be improved. Here, researchers reviewed the research progress of ultrafast laser micro nano manufacturing in areas such as material processing, surface/interface control, and micro functional device manufacturing. Several useful ultrafast laser processing methods and applications in these fields were introduced. Ultra fast laser processing technology has various processing effects and capabilities, and has shown application value in multiple fields from science to industry.

Figure 1 Overview of ultrafast laser micro nano processing structure schematic diagram


Figure 2 Reshaping of Metal Nanomaterials Induced by Ultrafast Laser


Figure 3 Ultrafast laser-induced ablation of metal nanomaterials


Figure 4 Ultra fast laser plasma nanomachining of multifunctional structures with photoresponsive properties


Figure 5 Formation of surface dislocation layer under femtosecond laser irradiation


Figure 6 Laser Induced Coffee Ring Structure for Color Printing


Figure 7 Strong metal carrier interaction induced by ultrafast laser


Figure 8 Ultrafast laser induces bubble enhanced fluorescence in dye solution


Figure 9 Optical Metasurfaces Prepared by Near Field Enhanced Ultrafast Laser Processing Method


Figure 10 Using a multi beam ultrafast laser to fabricate photonic crystals and subwavelength gratings


Figure 11 Preparation of Nanogap Graphene Supercapacitors by Ultrafast Laser Bessel Beam Processing


Figure 12 Ultrafast Laser Induced Carbonization from Carbonation Points


Figure 13 Preparation of hybrid supercapacitors using MoCl5 assisted carbonization method based on ultrafast laser

This article reviews the research progress of ultrafast laser micro nano processing technology in material processing, surface/interface control, and functional device manufacturing. These research results demonstrate the extensive material processing capabilities of ultrafast lasers, from altering the internal atomic structure of nanomaterials to manipulating the properties of material surfaces/interfaces. By adjusting the energy deposition of ultrafast laser processing, different processing effects on nanomaterials can be achieved, including reshaping, ablation, and interconnection. Ultrafast lasers provide an effective method to control the properties of material surfaces/interfaces, thereby achieving the construction of surface structures, impact strengthening, and strong metal carrier interactions. In addition, this technology can also produce micro functional devices, including photonic crystal devices, optical components, and electronic devices. These advances demonstrate the potential of ultrafast laser processing in both scientific and industrial fields. Ultrafast laser processing technology is still rapidly developing and will play a more important role in micro nano manufacturing in the future, bringing changes to multiple application fields.

Source: Yangtze River Delta Laser Alliance

Related Recommendations
  • China University of Science and Technology proposes composite cold field 3D printing technology for liquid crystal elastomers

    Recently, Associate Professor Li Mujun from the School of Engineering Sciences and the Institute of Humanoid Robotics at the University of Science and Technology of China, together with researchers such as Professor Zhang Shiwu, has made significant progress in the field of intelligent material 3D printing. The research team proposed composite cold field 3D printing technology and successfully pre...

    02-25
    See translation
  • Shanghai Microsystems Institute has developed a high-speed photon detector with distinguishable photon numbers

    Recently, Li Hao and You Lixing's team from the Chinese Academy of Sciences Shanghai Institute of Microsystems and Information Technology developed an ultrahigh speed, photon number resolvable optical quantum detector with a maximum count rate of 5GHz and a photon number resolution of 61 by using the sandwich structure superconducting nanowires and multi wires working in parallel. The related rese...

    2024-07-12
    See translation
  • Shenzhen Guangfeng Technology may cooperate with well-known German enterprises

    Recently, Shenzhen Guangfeng Technology Co., Ltd. once again disclosed a development fixed-point notice. Unlike other fixed-point notices received this year, this fixed-point notice points to the optical components of the vehicle's dynamic color pixel lights. According to company disclosure, Guangfeng Technology recently received a development notice from a leading international brand car compan...

    2024-11-18
    See translation
  • The Key Role of Laser Pointing Stability in the Application of Lithography Systems

    Lithography is one of the core processes in semiconductor manufacturing, and extreme ultraviolet lithography technology, as a new generation lithography technology, is also in a rapid development stage. The basic principle is to use photoresist (also known as photoresist) to form corrosion resistance due to photochemical reactions after being photosensitive, and to engrave the patterns on the mask...

    2024-07-02
    See translation
  • Yangtze Welcomes 8th Overseas Production Site

    On August 8, local time, Jalisco, Mexico welcomed the grand opening of Yangtze Optics Mexico Cable S.A. de C.V., marking the eighth overseas production base of Yangtze Optical Fiber & Cable Co. ("Yangtze Fiber Optics") has successfully set up its eighth overseas production base in its 36-year development history, further advancing its internationalization strategy blueprint. Today, we are pr...

    2024-08-14
    See translation