English

Professor Hu Yanlei from the University of Science and Technology of China, Nat Commun Preparation of Durable Janus Thin Films with Mode Switching by Femtosecond Laser

586
2024-02-22 14:05:35
See translation

Janus film is widely used in fields such as oil-water separation, water mist collection, and wearable patches due to its unique transmembrane directional water transport function. The function of traditional Janus thin films comes from the thickness direction of microchannels and single-sided chemical coating modifications (single-sided hydrophilic and hydrophobic modification of hydrophobic and hydrophilic substrates respectively). Water can be transported directionally from hydrophobic to hydrophilic surfaces through microchannels. However, during use, the chemical coating is prone to wear and tear, leading to functional failure. In non working conditions, microchannels are easily blocked by pollutants in the air, which greatly shortens the service life of Janus films. Faced with increasingly urgent practical application needs, the durability issue of Janus thin films urgently needs to be solved.

Professor Hu Yanlei from the School of Engineering Science at the University of Science and Technology of China and Associate Professor Zhang Yachao from Hefei University of Technology have innovatively considered the working mode and protection mode of Janus thin films separately. By stretching and releasing soft materials, they have achieved exposed and hidden protection of hydrophilic microporous groove channels, that is, switching between working and protection modes. When the Janus film encounters external mechanical friction or impact, the durability of the Janus film is improved by actively switching to the release protection mode. Based on the "mode switching" strategy, the team used femtosecond laser micro nano manufacturing method to prepare durable Janus thin films.

Research has found that the protective mode endows Janus film with mechanical durability, and it can still maintain the unidirectional transmission function of water droplets after 2000 friction cycles and 10 days of exposure to air (Figure 1). In addition, the protection mode can withstand harsh tests such as sandpaper friction, finger pressing, sand impact, tape peeling, and prevent pollutant particles from blocking channels (Figure 2). As a proof of concept, apply the mode switching durable Janus film to water mist collection in desert environments. For example, in the early morning when water mist is diffuse and there is no wind or sand, the Janus membrane is stretched to the working mode for water mist collection, and when a sandstorm occurs, it switches to a protective state to resist sand friction and impact. Taking the 30 minute water mist collection volume as an example, the results showed that the collection volume only decreased by 10% after rigorous testing, demonstrating the durable water mist collection ability of Janus film. In addition, long-term storage experiments were conducted on the protective mode Janus film under different temperatures, humidity, and chemical environments. The results showed that the water mist collection ability of the Janus film stored for 10 days was basically consistent with the original film, demonstrating the thermal stability, humidity stability, and chemical stability of the Janus film (Figure 3). The mode switching strategy proposed in this study has significant potential in promoting the practical application of Janus thin film functional devices in various fields such as multiphase separation purification, microfluidic control, and wearable health monitoring patches.

On February 16, 2024, the work was titled "Dual Janus membrane with on-demand mode switching fabricated by femtosecond laser" and published in Nature Communications.

Figure 1. Design and preparation of durable Janus film with "mode switching"


Figure 2. Mechanical durability test of Janus membrane under extreme conditions


Figure 3. Application of water mist collection based on durable Janus film



Source: Sohu

Related Recommendations
  • Huashu High tech launches a large format 12 laser metal 3D printer at TCT Asia

    Chinese industrial 3D printer manufacturer Huashu High tech has launched the FS811M metal powder bed fusion series platform. The FS811M series has a construction volume of 840 x 840 x 960 millimeters and can be equipped with powerful 6, 8, 10, or 12 x 500 watt fiber lasers."As the latest member of the Huashu High tech Metal 3D printer product portfolio, FS811M originates from our joint innovation ...

    2024-05-13
    See translation
  • An advanced laser processing laboratory for semiconductor materials and an all solid-state advanced laser research center will be established here

    On October 15th, the Laipu Technology National Headquarters and Integrated Circuit Equipment R&D and Manufacturing Base project successfully held a groundbreaking ceremony in the Chengdu High tech Zone.Project Business CardTotal project investment:1.66 billion yuanProject area:Covering an area of 39 acres, with a construction area of 65000 square metersProject Planning:Construction will begin...

    2023-10-18
    See translation
  • ZLDS100, a British high frequency laser displacement sensor, monitors multipoint vibration of silencers

    A muffler is a key component of a car's exhaust system, designed to reduce noise levels and emissions. The vibration of a muffler can have a significant impact on its performance and life. In order to understand the performance and behavior of the muffler, it is necessary to make multi-point vibration measurement. First, it enables engineers to assess the structural integrity and durability of a m...

    2023-08-04
    See translation
  • New discoveries bring progress in photon calculation

    International researchers led by Philip Walther from the University of Vienna have made significant breakthroughs in the field of quantum technology, successfully demonstrating quantum interference between multiple single photons using a new resource-saving platform. This work, published in Science Advances, represents a significant advancement in the field of quantum computing and paves the way f...

    2024-04-27
    See translation
  • Omnitron Announces Partnership with Silex Microsystems to Mass Produce MEMS Scanning Mirrors for LiDAR

    According to reports, Omnitron Sensors, a pioneer in the development of MEMS sensing technology for large-scale and low-cost markets, recently announced that it will collaborate with Silex Microsystems, a subsidiary of Semielectronics, to mass produce MEMS scanning mirrors for LiDAR.Eric Aguilar, co-founder and CEO of Omnitron Sensors, said, "We have noticed a huge demand from manufacturers of adv...

    2023-09-19
    See translation