English

A New Method for Controlling Light Polarization Using Liquid Crystal to Create Holograms

1232
2024-03-12 14:16:36
See translation

Researchers have made significant breakthroughs in controlling optical polarization, which is a key characteristic of various applications such as augmented reality, data storage, and encryption.

This new method was developed by a group of scientists using liquid crystals to create holograms, which can manipulate the polarization of light at different points. This represents a significant advancement in existing methods. The work was published in eLight magazine.

Traditional vector holography methods involve manipulating the polarization and intensity of light, typically relying on metasurfaces - aimed at controlling the structure of light waves. However, these metasurfaces are static and lack the flexibility required for dynamic photon applications.
This new method overcomes this limitation by using single-layer liquid chromatography, which is known for its ability to change its characteristics under an electric field, making it an ideal choice for dynamic control. Researchers have developed a new encoding method that allows LC to display multifunctional and adjustable vector holography, where polarization and amplitude can be independently controlled at different positions.

This innovation has the potential to completely change various fields. For example, it can obtain a more secure encryption method by creating complex dynamic holograms that are difficult to replicate. In addition, it can pave the way for higher resolution displays and even active holographic video projection.

The research team is optimistic about the impact of their work on the real world. They believe that this new method, which does not require complex manufacturing processes, can be easily integrated into existing technologies, opening up exciting possibilities for the future of displays, information encryption, and metasurface applications.

This is a significant development in the field of optics, and its potential applications are enormous. The work of researchers highlights the power of combining advanced materials with innovative design technologies to achieve far-reaching breakthroughs.

Source: Laser Net

Related Recommendations
  • Using attosecond pulses to reveal new information about the photoelectric effect

    Scientists from the Stanford National Accelerator (SLAC) laboratory of the US Department of Energy have revealed new information about the photoelectric effect using attosecond pulses: the delay time of photoelectric emission is as long as 700 attosecond, far exceeding previous expectations. The latest research challenges existing theoretical models and helps to reveal the interactions between ele...

    2024-09-02
    See translation
  • A New RIEGL Laser Scanning Solution for Drone Data Acquisition

    With its latest developments, RIEGL once again emphasizes its pioneering role as a supplier of high-performance LiDAR sensors and integrated systems with UAS. The continuous trend in the drone system industry requires measurement level laser scanners that match the integrated performance of compact multi rotor and high-speed vertical takeoff and landing or fixed wing drone platforms.RIEGL has reco...

    2023-12-01
    See translation
  • Sivers will develop laser arrays for artificial intelligence and deliver prototypes in 2024

    Sivers Optics, a subsidiary of Sivers Semiconductors, has signed a product development agreement with an undisclosed company.Starting from the initial contract worth $1.3 million, the prototype will be delivered in 2024, and it is expected that the agreement will grow rapidly in 2025 before transitioning to mass production. After entering full production, customers expect the annual chip productio...

    2024-03-18
    See translation
  • Acta: Revealing the mechanism of defect formation in additive manufacturing

    Main author: Yanming Zhang, Wentao Yana*The first unit: National University of SingaporePublished Journal: Acta MaterialiaResearch backgroundIndustry pain point: Although laser powder bed melting (LPBF) technology can manufacture complex components, the lack of consistent product quality is still the core bottleneck restricting its industrial application. Research has shown that up to 35% of proce...

    02-21
    See translation
  • Fraunhofer ISE develops a faster laser system for wafer processing

    By using a new type of laser, the processing speed of wafers can be 10 to 20 times faster than before. This is the result of a research project at the Fraunhofer Institute for Solar Systems in Germany.Researchers have developed a prototype that can use ultraviolet waves to carve the most intricate structures on silicon wafers. The new system concept enables solar cell manufacturers to perform lase...

    2023-12-23
    See translation