English

A New Method for Controlling Light Polarization Using Liquid Crystal to Create Holograms

1229
2024-03-12 14:16:36
See translation

Researchers have made significant breakthroughs in controlling optical polarization, which is a key characteristic of various applications such as augmented reality, data storage, and encryption.

This new method was developed by a group of scientists using liquid crystals to create holograms, which can manipulate the polarization of light at different points. This represents a significant advancement in existing methods. The work was published in eLight magazine.

Traditional vector holography methods involve manipulating the polarization and intensity of light, typically relying on metasurfaces - aimed at controlling the structure of light waves. However, these metasurfaces are static and lack the flexibility required for dynamic photon applications.
This new method overcomes this limitation by using single-layer liquid chromatography, which is known for its ability to change its characteristics under an electric field, making it an ideal choice for dynamic control. Researchers have developed a new encoding method that allows LC to display multifunctional and adjustable vector holography, where polarization and amplitude can be independently controlled at different positions.

This innovation has the potential to completely change various fields. For example, it can obtain a more secure encryption method by creating complex dynamic holograms that are difficult to replicate. In addition, it can pave the way for higher resolution displays and even active holographic video projection.

The research team is optimistic about the impact of their work on the real world. They believe that this new method, which does not require complex manufacturing processes, can be easily integrated into existing technologies, opening up exciting possibilities for the future of displays, information encryption, and metasurface applications.

This is a significant development in the field of optics, and its potential applications are enormous. The work of researchers highlights the power of combining advanced materials with innovative design technologies to achieve far-reaching breakthroughs.

Source: Laser Net

Related Recommendations
  • The world's highest power industrial grade fiber laser is released in Tianjin

    On August 31st, Tianjin Kaipulin Optoelectronics Technology Co., Ltd. (hereinafter referred to as Kaipulin), a Tianjin Port Free Trade Zone enterprise, officially released the world's first 200000 watt ultra-high power industrial grade fiber laser, breaking the record for the highest power of industrial grade fiber lasers in the world and marking China's stable position in the international advanc...

    2024-09-02
    See translation
  • Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

    In the interaction between ultra short and ultra strong laser and matter, electrons with short pulse width and high energy are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite a wide range of ultrafast electromagnetic radiation, as well...

    2024-04-30
    See translation
  • Automated methods for background estimation in laser spectroscopy

    A new automated method for spectral background estimation in laser spectroscopy ensures the accuracy of quantitative analysis with minimal human intervention.When using laser-induced breakdown spectroscopy in spectral analysis, scientists may encounter various obstacles. The most common challenge faced by scientists when conducting elemental analysis is to optimize the interaction between the lase...

    2023-11-24
    See translation
  • Vigo University School of Technology invents laser glass recycling system

    LaserON, a laser industrial application group at the University of Vigo, is leading a European project that aims to revolutionize the glass recycling process by developing a new technology called glass laser conversion, so that everyone can recycle at home. This group is led by Professor Juan Pou and Professor Rafael Comesa ñ a, and is part of Cintecx, leading EverGlass. Its partners come f...

    2024-01-19
    See translation
  • TDK introduces a new gold-wire-bonded optional NTC thermistor for laser diode temperature measurement

    TDK Corporation (TSE: 6762) announced the introduction of the new NTCWS series of NTC thermistors with gold wire bonding. These bonding NTC thermistors can be installed in packages via gold wire bonding to enable high precision temperature detection of laser diodes (LD) for optical communication. The series will begin mass production in September 2023.The use of LD devices in optical communication...

    2023-09-08
    See translation