English

A New Method for Controlling Light Polarization Using Liquid Crystal to Create Holograms

1050
2024-03-12 14:16:36
See translation

Researchers have made significant breakthroughs in controlling optical polarization, which is a key characteristic of various applications such as augmented reality, data storage, and encryption.

This new method was developed by a group of scientists using liquid crystals to create holograms, which can manipulate the polarization of light at different points. This represents a significant advancement in existing methods. The work was published in eLight magazine.

Traditional vector holography methods involve manipulating the polarization and intensity of light, typically relying on metasurfaces - aimed at controlling the structure of light waves. However, these metasurfaces are static and lack the flexibility required for dynamic photon applications.
This new method overcomes this limitation by using single-layer liquid chromatography, which is known for its ability to change its characteristics under an electric field, making it an ideal choice for dynamic control. Researchers have developed a new encoding method that allows LC to display multifunctional and adjustable vector holography, where polarization and amplitude can be independently controlled at different positions.

This innovation has the potential to completely change various fields. For example, it can obtain a more secure encryption method by creating complex dynamic holograms that are difficult to replicate. In addition, it can pave the way for higher resolution displays and even active holographic video projection.

The research team is optimistic about the impact of their work on the real world. They believe that this new method, which does not require complex manufacturing processes, can be easily integrated into existing technologies, opening up exciting possibilities for the future of displays, information encryption, and metasurface applications.

This is a significant development in the field of optics, and its potential applications are enormous. The work of researchers highlights the power of combining advanced materials with innovative design technologies to achieve far-reaching breakthroughs.

Source: Laser Net

Related Recommendations
  • MKS Instruments will build a factory in Malaysia

    Recently, American semiconductor equipment manufacturer MKS Instruments announced plans to build a factory in Penang, Malaysia to support the production of wafer manufacturing equipment in the region and globally. This development plan will be divided into three stages to build a new factory, and it is expected to break ground and start construction in early 2025.Why choose to build a factory in M...

    2024-06-26
    See translation
  • NKT Photonics utilizes fiber lasers to achieve deep space communication links

    On July 7, the European Space Agency (ESA), established Europe’s first deep-space optical communication link with NASA’s Psyche mission using a high-power fiber laser system supplied by NKT Photonics, a subsidiary of Hamamatsu.NKT’s announcement stated, “This achievement, conducted with NASA/JPL’s Deep Space Optical Communications (DSOC) demonstrator, marks a significant leap forward in high-data-...

    07-21
    See translation
  • Focusing on Lithuanian solid-state and fiber laser manufacturer EKSPLA

    In this interview, Dr. Antonio Castelo, EPIC Biomedical and Laser Technology Manager, had a conversation with Aldas Juronis, CEO of EKSPLA, a Lithuanian innovative solid-state and fiber laser manufacturer.What is the background of your appointment as the CEO of EKSPLA?In 1994, I graduated from Kaonas University of Technology in Lithuania with a Bachelor's degree in Radio Electronic Engineering. At...

    2023-11-07
    See translation
  • High sensitivity visualization of ultrafast carrier diffusion using a wide field holographic microscope

    A sketch of the imaging and holographic parts of a transient holographic microscope, including a pulse sequence, to illustrate the signal modulation method. By imaging the pinhole array at the sample position, a diffraction limited excitation spot array can be created, allowing for the simultaneous collection of transient data around 100 excitation spots.Femtosecond transient microscopy is an impo...

    2023-12-25
    See translation
  • Researchers have created the first organic semiconductor laser to operate without the need for a separate light source

    OLED is located at the top and is formed by an organic layer between the contacts. Apply voltage to it, inject charge and generate light, which in turn excites organic laser. Organic lasers contain a grating that can generate feedback and diffract some of the laser out of the structure.Organic laserResearchers have created the first organic semiconductor laser to operate without the need for a sep...

    2023-11-29
    See translation