English

Shanghai Institute of Optics and Fine Mechanics has made progress in composite material based picosecond mirrors

58
2024-07-12 11:43:41
See translation

Recently, the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the research of composite based picosecond mirrors. The related research results were published in Optics and Laser Technology under the title of "Hybrid Material Based Mirror Coatings for Picosed Laser Applications".

Picosecond pulse lasers are often used for fundamental research in high-energy density physics. As a key component of picosecond laser systems, the laser damage threshold of mirrors directly affects the output energy of picosecond laser systems. Traditional picosecond laser mirrors use hafnium oxide and silicon oxide as high and low refractive index materials, respectively. In recent years, composite materials including nanostacks and mixtures have received widespread attention in improving the laser damage threshold of thin film components. The study of composite picosecond mirrors and their laser damage characteristics under different pulse widths of laser irradiation has certain practical application value.

Researchers have prepared four types of composite materials using electron beam evaporation technology, including hafnium oxide/aluminum oxide nanostack, hafnium oxide/silicon oxide nanostack, hafnium oxide aluminum oxide mixture, and hafnium oxide silicon oxide mixture. Compared with a single hafnium oxide material, composite materials can suppress crystallization and reduce surface roughness. Four types of reflective mirrors with working wavelengths at 1053 nm were prepared using the above-mentioned composite materials and silicon oxide materials as high and low refractive index materials. The damage test results of the mirror under different pulse widths (0.5 ps, 1 ps, 3 ps, and 8 ps) of laser irradiation show that compared with the picosecond mirror using hafnium oxide as the high refractive index material, the picosecond mirror using composite materials as the high refractive index material exhibits a higher laser damage threshold. Within the laser pulse range studied in this article, the initial laser damage mechanism of the reflector begins to change around 3 ps. This achievement is of great significance for improving the performance of optical thin film components such as picosecond laser reflectors.

Figure 1. AFM micrographs and RMS roughness of different mirrors, (b) laser-induced damage probability distribution (8 ps, 1053 nm)

Figure 2. Probability distribution of laser-induced damage with different pulse widths (a) 0.5 ps, (b) 1 ps, and (c) 3 ps; (d) The variation of laser damage threshold with laser pulse width

Note:
M-H refers to a picosecond mirror made of hafnium oxide, a high refractive index material;
M-N1 refers to a picosecond mirror with a high refractive index material of hafnium oxide/aluminum oxide nanostack;
M-N2 refers to a picosecond mirror with a high refractive index material of hafnium oxide/silicon oxide nanostack;
M-M1 refers to a picosecond mirror with a high refractive index material of hafnium oxide alumina mixture;
M-M2 refers to a picosecond mirror with a high refractive index material of hafnium oxide silicon oxide mixture.

Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

Related Recommendations
  • Opton Laser commercializes ultra-high contrast third-order autocorrelators

    Recently, Opton Laser International, a supplier specializing in photonics, is currently distributing manufacturer UltraFast Innovations (UFI)'s ultra-high contrast third-order autocorrelator Tundra++. The new generation Tundra aims to characterize the temporal intensity distribution and quality of laser pulses with particularly high sensitivity.This is to avoid the harmful effects caused by the hi...

    2023-08-31
    See translation
  • Halloween\Christmas Laser Processing Art Carnival !!

    Chanelink Halloween\Christmas Laser Processing Art CarnivalShow your design talent and win a cool laser engraver cutter.TimeUpload of work and canvassing period: October 25, 2023 - December 25, 2023Winner announcement time : December 29, 2023ContentEligible participant:Laser industry practitioners, enthusiasts, who must be at least 18 years old.Awards:First prize (1...

    2023-10-25
    See translation
  • Researchers enhance the signal of perovskite nanosheets

    In the field of optoelectronics, researchers from Busan National University in South Korea and the University of Oxford in the UK have successfully improved the signal amplification ability of CsPbBr3 perovskite nanosheets through innovative patterned waveguide methods, bringing new possibilities for the future of optoelectronics. This breakthrough not only has potential applications in fields suc...

    2024-02-22
    See translation
  • The researchers expect the EUV lithography market to grow from $9.4 billion in 2023 to $25.3 billion in 2028

    The researchers estimate the period from 2023 to 2028. EUV lithography will address the limitations of traditional optical lithography, which has reached its physical limits in terms of resolution. The shorter wavelength of EUV light allows for the creation of smaller features and tighter patterns on silicon wafers, enabling the manufacture of advanced microchips with greater transistor densities....

    2023-08-04
    See translation
  • Professor Hu Yanlei from the University of Science and Technology of China, Nat Commun Preparation of Durable Janus Thin Films with Mode Switching by Femtosecond Laser

    Janus film is widely used in fields such as oil-water separation, water mist collection, and wearable patches due to its unique transmembrane directional water transport function. The function of traditional Janus thin films comes from the thickness direction of microchannels and single-sided chemical coating modifications (single-sided hydrophilic and hydrophobic modification of hydrophobic and h...

    2024-02-22
    See translation