English

Short pulse lasers in the form of chips use the so-called mode coupling principle

1149
2023-11-10 14:56:31
See translation

Nowadays, lasers that emit extremely short flashes can be found in many research laboratories, but they usually fill the entire room. Physicists have now successfully reduced this laser to the size of a computer chip. As they reported in the journal Science, their research can lay the foundation for extremely compact detectors.

A team led by Qiushi Guo from the California Institute of Technology in Pasadena has constructed their prototype semiconductor for short pulse lasers based on gallium arsenide, which is used to generate laser beams. They combined it with a crystal of another compound called lithium niobate, which is used as a conductor for light waves. Researchers arranged these two components on the basis of silicon and silicon dioxide to produce laser chips with a size of only a few millimeters.

Like other short pulse lasers, the new micro laser uses the so-called mode coupling principle: the light waves in the laser match each other in a mutually amplified manner, resulting in extremely short light pulses. Researchers successfully achieved this by applying high-frequency electric fields adapted to laser pulses. Previously, larger short pulse lasers also used this principle. But in the new laser, they cleverly arranged tiny waveguides so that they could keep the laser correspondingly small.

Trillionths of a second of short infrared flash
In testing, the prototype emitted short flashes of less than five picoseconds - millionths of a second infrared light. Their wavelength was 1065 nanometers and they repeated about 10 billion times per second. When doing so, the maximum power of the laser is half a watt, which is 500 times that of a traditional laser pen.

In the future, micro lasers can pave the way for small detectors, such as detecting bacteria and viruses in smartphones. They reflect the incident laser in a unique way, so they can be detected using highly sensitive sensors. Other applications lie in chips that use light to process digital data, making them faster than other systems. Even atomic clock lasers can be used in chip form. These can achieve accurate navigation without GPS signal, "Guo said. Considering these applications, researchers now hope not only to further increase the power of short pulse lasers, but also to make the optical pulses shorter - as low as a few femtoseconds.

Source: Laser Network

Related Recommendations
  • New Source Technology will participate in the 2024 Western Optoelectronics Show in the United States

    Laser and electro-optic product manufacturer and supplier Xinyuan Technology announced today that it plans to participate in the 2024 Western Optoelectronics Show in San Francisco from January 30th to February 1st.As a top event in the photonics industry, the Western Optoelectronics Show in the United States will return in 2024 to host another groundbreaking exhibition. This annual event att...

    2023-11-11
    See translation
  • Trumpf Laser releases latest fiscal year data

    Recently, German laser giant Trumpf released data for the fiscal year 2023/24. The latest financial report shows that the group's sales decreased by 4% and order volume decreased by 10% in the fiscal year 2023/24.Despite these setbacks, Germany has become the company's strongest single market for the first time in many years, highlighting a shift in market dynamics.At the end of this fiscal year, ...

    2024-07-19
    See translation
  • Amada launches latest precision laser welding workstation wl-300a

    Recently, Amada weld tech Inc., a Japanese supplier of welding and cutting solutions, grandly launched a new wl-300a precision laser welding workstation, which is equipped with advanced continuous wave (CW) or quasi continuous wave (QCW) fiber lasers. It has a wide range of applications, especially for metal welding and processing of selected plastic materials, especially in the aerospace field.Wl...

    2024-05-31
    See translation
  • Innovative nanoparticle analysis: achieving breakthrough 3D imaging using X-ray lasers

    The latest progress in X-ray laser technology has opened up a new era of nanoscale exploration, bringing unprecedented opportunities for materials science and nanotechnology. Researchers have developed a novel imaging technique that can directly visualize separated nanosamples in free flight, capturing their complex structures with stunning details. This breakthrough method relies on single cohere...

    2024-03-05
    See translation
  • Shanghai Optics and Machinery Institute has made progress in the research of new terahertz sources based on Yb lasers

    Recently, the State Key Laboratory of Intense Field Laser Physics of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made new progress in generating intense field terahertz waves based on Yb laser pumped organic crystals. The relevant research results were published in Applied Physics Letters under the title "Efficient strong field THz generation from DSTMS crys...

    2024-04-09
    See translation