English

Theoretical physicist Farok Miwivar studied the interaction between two sets of luminescent atoms in a quantum cavity

86
2024-02-21 14:17:01
See translation

Theoretical physicist Farok Miwivar studied the interaction between two sets of luminescent atoms in a quantum cavity - a quantum cavity is an optical device composed of two excellent small mirrors that can capture light in a small area for a long time.

This model and its predictions can be used for the next generation of superradiance lasers. They can be used and observed in cutting-edge cavity/waveguide quantum electrodynamics research.

One of the most stunning and unexpected phenomena in quantum optics is superradiance. It can be understood by imaging atoms as tiny antennas that emit electromagnetic radiation or light under appropriate conditions.

On the other hand, if these atoms are very close to each other, the atomic antennas will begin to communicate with each other and thus synchronize. This leads to light emission, whose intensity increases with the square of the number of atoms.

Recently, Farokh Mivehvar studied two sets of atoms, N1 and N2, where theoretically each atom has many atoms within a quantum cavity. This study was published in the journal Physical Review Letters. The atoms in each cluster are very close to each other and can produce superradiance.

Firstly, two huge antennas create a super giant antenna that can emit more superradiance. On the other hand, in the second method, due to the destructive competition between two large antennas, superradiance light emission is suppressed.

Especially, when the number of atoms in two ensembles is equal, superradiance light emission is suppressed.
Farokh Mivehvar said, "In addition, we also found that two giant antennas emit light, which is a combination of the two types mentioned earlier and has oscillation characteristics.".

In cutting-edge cavity/waveguide quantum electrodynamics experiments, the model and its predictions can be achieved and observed. The latest generation of so-called superradiance lasers may also find applications in the discovery.

Source: Laser Net

Related Recommendations
  • NASA will demonstrate laser communications from the space station

    NASA's ILLUMA-T payload communicates with the LCRD via laser signals.NASA uses the International Space Station, a spacecraft the size of a football field orbiting the Earth, to learn more about living and working in space. For more than 20 years, the space station has provided a unique platform for investigation and research in the fields of biology, technology, agriculture and more. It is home to...

    2023-09-02
    See translation
  • Developing a concentration independent pressure sensing method for high-temperature combustion diagnosis

    Recently, a research group led by Professor Gao Xiaoming and Professor Liu Kun of the Chinese Academy of Sciences Hefei Institute of Physical Sciences developed a concentration independent pressure sensing method based on two-color laser absorption spectrum for high-temperature combustion diagnosis.The research findings are published in Optics Letters.Aircraft engines are developing towards high-t...

    2024-03-08
    See translation
  • Laser photonics helps simplify maintenance processes in the mining industry

    Laser Photonics Corporation (LPC) is a leading global developer of industrial laser systems for cleaning and other material processing applications, emphasizing the critical applications of its industrial laser cleaning systems in the mining industry.Laser Photonics provides a user-friendly, ethical, cost-effective, and time-saving solution for professionals in the mining industry to maintain heav...

    2024-06-14
    See translation
  • Deere Laser's self-developed laser induced sintering technology, with LIF equipment orders exceeding 100GW in production capacity

    Recently, Deere Laser received mass production orders and bid confirmations for laser induced sintering (LIF) equipment from multiple top customers, with a cumulative production capacity exceeding 100GW.As an innovative technology iteratively developed by the company based on its own LIR technology and LIA technology, LIF technology has won industry recognition for its excellent efficiency improve...

    2023-09-18
    See translation
  • A German 3D printing company applies for bankruptcy

    On February 5th, it was reported that Q BIG 3D GmbH filed for bankruptcy on January 31, 2025. The Ludwigsburg District Court has ordered temporary bankruptcy administration and appointed Mr. Ilkin Bananyarli of PLUTA Rechtsanwarts GmbH as the temporary bankruptcy administrator.The company was founded in 2019 and focuses on large format particle 3D printing systems, providing additive manufacturing...

    02-06
    See translation