English

Theoretical physicist Farok Miwivar studied the interaction between two sets of luminescent atoms in a quantum cavity

908
2024-02-21 14:17:01
See translation

Theoretical physicist Farok Miwivar studied the interaction between two sets of luminescent atoms in a quantum cavity - a quantum cavity is an optical device composed of two excellent small mirrors that can capture light in a small area for a long time.

This model and its predictions can be used for the next generation of superradiance lasers. They can be used and observed in cutting-edge cavity/waveguide quantum electrodynamics research.

One of the most stunning and unexpected phenomena in quantum optics is superradiance. It can be understood by imaging atoms as tiny antennas that emit electromagnetic radiation or light under appropriate conditions.

On the other hand, if these atoms are very close to each other, the atomic antennas will begin to communicate with each other and thus synchronize. This leads to light emission, whose intensity increases with the square of the number of atoms.

Recently, Farokh Mivehvar studied two sets of atoms, N1 and N2, where theoretically each atom has many atoms within a quantum cavity. This study was published in the journal Physical Review Letters. The atoms in each cluster are very close to each other and can produce superradiance.

Firstly, two huge antennas create a super giant antenna that can emit more superradiance. On the other hand, in the second method, due to the destructive competition between two large antennas, superradiance light emission is suppressed.

Especially, when the number of atoms in two ensembles is equal, superradiance light emission is suppressed.
Farokh Mivehvar said, "In addition, we also found that two giant antennas emit light, which is a combination of the two types mentioned earlier and has oscillation characteristics.".

In cutting-edge cavity/waveguide quantum electrodynamics experiments, the model and its predictions can be achieved and observed. The latest generation of so-called superradiance lasers may also find applications in the discovery.

Source: Laser Net

Related Recommendations
  • The Stanford University team has manufactured the first practical chip grade titanium sapphire laser

    According to a report in Nature on June 26th, a team from Stanford University in the United States has developed a titanium sapphire laser on a chip. Whether in terms of scale efficiency or cost, this achievement is a huge progress. Image source: Nature websiteTitanium sapphire lasers are indispensable in many fields such as cutting-edge quantum optics, spectroscopy, and neuroscience, but they ...

    2024-07-01
    See translation
  • A new method of generating laser without the need for mirrors

    A new laser generation method: a laser without a reflector. This study, conducted by a team of physicists from the University of Innsbruck and Harvard University, shows that quantum emitters with spacing smaller than the wavelength can achieve constructive synchronization of photon emission, resulting in bright and extremely narrow bandwidth beams, even without any optical resonant cavities.The ac...

    10-30
    See translation
  • China has successfully developed the world's first 193 nanometer compact solid-state laser

    The Chinese Academy of Sciences reduced the volume of the deep ultraviolet laser by 90% and achieved 193 nm vortex beam output for the first time. Professor Xuan Hongwen described "loading truck equipment into the car trunk". This technology enables a 30% reduction in the size of lithography features, breaking through the bottleneck of the 2-nanometer process. In the next three years, laser power ...

    03-24
    See translation
  • Duke University: Laser imaging holds promise for early detection of risky artworks

    Compared to Impressionist paintings taken 50 years ago, upon closer inspection of Impressionist paintings in museums, you may notice some strange things: some are losing their bright yellow hue.Taking the dramatic sunset in Edward Munch's masterpiece "The Scream" as an example. The once bright orange yellow parts of the sky have faded to off white.Similarly, in his painting "The Joy of Life", Henr...

    2024-05-14
    See translation
  • Progress in research on neodymium doped strontium aluminate lanthanum magnesium laser crystals by Shanghai Optics and Machinery Institute

    Recently, the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the research of Nd: ASL (Sr0.7Nd0.05La0.25Mg0.3Al22.7O19) laser crystals, and the related achievements were published in Infrared Physics&Technology under the title of "Tunable laser operations on Nd doped cont...

    2024-03-19
    See translation